Advertisement

Plant Systematics and Evolution

, Volume 299, Issue 8, pp 1419–1431 | Cite as

The evolution of Dianthus polylepis complex (Caryophyllaceae) inferred from morphological and nuclear DNA sequence data: one or two species?

  • Mohammad Farsi
  • Maryam Behroozian
  • Jamil Vaezi
  • Mohammad Reza Joharchi
  • Farshid Memariani
Original Article

Abstract

Dianthus polylepis complex consists of two already known endemic species, Dianthus polylepis and D. binaludensis, in Khorassan-Kopetdagh floristic province. The taxonomic position of these species has long been debated. The aim of the present study is to shed light on the evolutionary relationships of the members of the complex using morphological and molecular data. In morphological study, firstly, 56 vegetative and floral characters were measured on 33 specimens of the both species. Multivariate analyses were performed on 25 (out of 56) significantly discriminating morphological traits. In molecular study, we sequenced alleles obtained from a region between 2nd and 6th exons of the gene coding for the enzyme dihydroflavonol 4-reductase copy1 (DFR1). Morphological results show that most of a priori identified accessions were not grouped in a posteriori classification. It is difficult to discriminate D. polylepis from D. binaludensis in morphological continuum among the accessions. Results obtained from the molecular data indicated no monophyly for the members of the D. polylepis complex. Consistency between the morphological and molecular results shows that D. polylepis and D. binaludensis were not morphologically and molecularly well differentiated. Therefore, we propose a new combination as D. polylepis subsp. binaludensis.

Keywords

Caryophyllaceae Dianthus polylepis complex Morphology Molecular phylogeny Iran 

Notes

Acknowledgments

The authors wish to thank vice president for Research and Technology of Ferdowsi University of Mashhad for financial support.

References

  1. Akhani H (1998) Plant biodiversity of Golestan National Park. Stapfia 53:1–411Google Scholar
  2. Al-Saghir MG (2010) Perspective on Chromosome Numbers in the Genus Pistacia L. (Anacardiaceae). Int J Plant Breed Genet 4:153–157CrossRefGoogle Scholar
  3. Assadi M (1985) The genus Dianthus L. (Caryophyllaceae) in Iran. Iran J Bot 3:9–54Google Scholar
  4. Balao F, Casimiro-Soriguer R, Talavera M, Herrera J, Talavera S (2009) Distribution and diversity of cytotypes in Dianthus broteri as evidenced by genome size variations. Ann Bot 104:965–973PubMedCrossRefGoogle Scholar
  5. Balao F, Valente LM, Vargas P, Herrera J, Talavera S (2010) Radiative evolution of polyploid races of the Iberian carnation Dianthus broteri (Caryophyllaceae). New Phytol 187:542–551PubMedCrossRefGoogle Scholar
  6. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277CrossRefGoogle Scholar
  7. Baldwin BG, Cawford DJ, Francisco-Ortega J, Kim S, Sang T, Stuessy T (1998) Molecular phylogenetic insights into the origin and evolution of island plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. Kluwer, Boston, pp 410–441CrossRefGoogle Scholar
  8. Bijlsma R, Van der Velde M, Van de Zande L, Boerema AC, Van Zanten BO (2000) Molecular markers reveal cryptic species within Polytrichum commune (common hair-cap moss). Plant Biol 2:408–414CrossRefGoogle Scholar
  9. Bittkau C, Comes HP (2009) Molecular inference of a Late Pleistocene diversification shift in Nigella s. lat. (Ranunculaceae) resulting from increased speciation in the Aegean archipelago. J Biogeogr 36:1346–1360CrossRefGoogle Scholar
  10. Bloch D, Werdenberg N, Erhardt A (2006) Pollination crisis in the butterfly-pollinated wild carnation Dianthus carthusianorum? New Phytol 169:699–706PubMedCrossRefGoogle Scholar
  11. Bryant D, Moulton V (2002). NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. Algorithms in bioinformatics. In: Guigo R, Gusfield D (eds) Second international workshop, WABI, Rome, Italy. Lecture Notes in Computer Science, vol 2452, pp 375–391Google Scholar
  12. Bryant D, Moulton V (2004) Neighbour-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  13. Collin CL, Shykoff JA (2003) Outcrossing rates in the Gynomonoecious-Gynodioecious species Dianthus sylvestris (Caryophyllaceae). Amer J Bot 90:579–585CrossRefGoogle Scholar
  14. Crespi AL, Bernardos S, Paiva J, Amich F, Fernandes CP, Castro A (2004) An approach to phenotypic analysis and environmental variability. The examples of the genera Dianthus L. and Lotus L. in the north of Portugal. Acta Bot Croat 63:35–48Google Scholar
  15. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  17. Duarte JM, Wall PK, Edger PP, Landherr LL, Ma H, Pires JC, Leebens-Mack J, dePamphilis CW (2010) Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels. BMC Evol Biol 10:61PubMedCrossRefGoogle Scholar
  18. Erhardt A (1990) Pollination of Dianthus gratianopolitanus Vill. Plant Syst Evol 170:125–132CrossRefGoogle Scholar
  19. Erhardt A (1991) Pollination of Dianthus superbus L. Flora 185:99–106Google Scholar
  20. Fan C, Purugganan MD, Thomas DT, Wiegmann BM, Xiang QY (2004) Heterogeneous evolution of the Myc-like anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Mol Phylog Evol 33:580–594CrossRefGoogle Scholar
  21. Fazekas AJ, Kesanakurti PR, Burgess KS, Percy DM, Graham SW, Barrett SCH, Newmaster SG, Hajibabaei M, Husband BC (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Resour 9:130–139PubMedCrossRefGoogle Scholar
  22. Friedman H, Hagiladi A, Resnick N, Barak A, Umiel N (2001) Ethylene-insensitive related phenotypes exist naturally in a genetically variable population of Dianthus barbatus. Theor Appl Genet 103:282–287CrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  24. Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  25. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  26. Inagaki Y, Johzuka-Hisatomi Y, Mori T, Takahashi S, Hayakawa Y, Peyachoknagul S, Ozeki Y, Iida S (1999) Genomic organization of the genes encoding dihydroflavonol 4-reductase for flower pigmentation in the Japanese and common morning glories. Gene 226:181–188PubMedCrossRefGoogle Scholar
  27. Jafari A, Behroozian M (2010) A cytotaxonomic study on Dianthus L. species in north eastern Iran. Asian J Plant Sci 9:58–62CrossRefGoogle Scholar
  28. Janssens BS, Geuten K, Viaene T, Yuan YM, Song Y, Smets E (2007) Phylogenetic utility of the AP3/DEF K-domain and its molecular evolution in Impatiens (Balsaminaceae). Mol Phylog Evol 43:225–239CrossRefGoogle Scholar
  29. Joly S, Starr JR, Lewis WH, Bruneau A (2006) Polyploid and hybrid evolution in roses east of the Rocky Mountains. Am J Bot 93:412–425PubMedCrossRefGoogle Scholar
  30. Jullien N (2008). Amplifx. A tool for seeking and designing new primers. Ver. 1.5.4. http://www.softpedia.com/get/Others/Home-Education/AmplifX.shtml
  31. Kadereit J, Griebeler E, Comes H (2004) Quaternary diversification in European alpine plants: pattern and process. Proc R Soc Lond B 359:265–274Google Scholar
  32. Legendre P, Legendre L (1998) Numerical ecology. Elsevier Press, AmsterdamGoogle Scholar
  33. Linder H (2008) Plant species radiations: where, when, why? Proc R Soc B 363:3097–3105Google Scholar
  34. Linder HP, Dlamini T, Henning J, Verboom GA (2006) The evolutionary history of Melianthus (Melianthaceae). Amer J Bot 93:1052–1064CrossRefGoogle Scholar
  35. Lu Z, Cai YM, Qiang Z, Yu ZH, Ren HM (2002) Sequence of the ITS region of nuclear ribosomal DNA (nrDNA) in Xinjiang wild Dianthus and its phylogenetic relationship [J]. Acta Genet Sinica 29:549–554Google Scholar
  36. Mandakova T, Munzbergova Z (2006) Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic. Ann Bot 98:845–856PubMedCrossRefGoogle Scholar
  37. Martens S, Knott J, Seitz CA, Janvari L, Yu SN (2003) Impact of biochemical pre-studies on specific metabolic engineering strategies of flavonoid biosynthesis in plant tissues. Biochem Eng J 14:227–235CrossRefGoogle Scholar
  38. Müler K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA data sets. Appl Bioinformatics 4:65–69CrossRefGoogle Scholar
  39. Naumann J, Symmank L, Samain MS, Müller KF, Neinhuis C, dePamphilis CW, Wanke S (2011) Chasing the hare—evaluating the phylogenetic utility of a nuclear single copy gene region at and below species level within the species rich group Peperomia (Piperaceae). BMC Evol Biol 11:357PubMedCrossRefGoogle Scholar
  40. Nlander JAA (2004). MrModeltest v2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/
  41. Nowrouzi G, Priestley KF, Ghafory-Ashtiany M, Javan Doloei G, Rham DJ (2007) Crustal velocity structure in Iranian Kopeh-Dagh, from analysis of P-waveform receiver functions. J Sustain Energy Environ 8:187–194Google Scholar
  42. Olsen KO, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. Proc Natl Acad Sci USA 96:5586–5591PubMedCrossRefGoogle Scholar
  43. Otieno DF, Balkwill K, Paton AJ (2006) A multivariate analysis of morphological variation in the Hemizygia bracteosa complex (Lamiaceae, Ocimeae). Plant Syst Evol 26:19–38CrossRefGoogle Scholar
  44. Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462PubMedCrossRefGoogle Scholar
  45. Owen E, Semple JC, Baum BR (2006) A multivariate morphometric analysis of the Symphyotrichum boreale—S. nahanniense—S. welshii complex (Asteraceae: Astereae). Canad J Bot 84:1282–1297CrossRefGoogle Scholar
  46. Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410CrossRefGoogle Scholar
  47. Page DM (2001) TreeView (Win32) Version 1.6.6. http://taxonomy.zoology.gla.ac.uk/rod/rod.html
  48. Page DM, Charleston MA (1997) From gene to organismal phylogeny: reconciled trees and the gene tree/species tree problem. Mol Phyl Evol 7:231–240CrossRefGoogle Scholar
  49. Paun O, Forest F, Fay MF, Chase MW (2009) Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytol 182:507–518PubMedCrossRefGoogle Scholar
  50. Pillon Y, Fay MF, Hedrén M, Batean RM, Devey DS, Shipunov AB, Bank MVD, Chase MW (2007) Evolution and temporal diversification of western European polyploid species complexes in Dactylorhiza (Orchidaceae). Taxon 56:1185–1208CrossRefGoogle Scholar
  51. Posada D (2004) Collapse: describing haplotypes from sequence alignments, Ver.1.2. http://darwin.uvigo.es/software/collapse.htm
  52. Rambaut A, Drummond AJ (2003) Tracer v 1.3. http://evolve.zoo.ox.ac.uk
  53. Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Annu Rev Ecol Syst 29:467–501CrossRefGoogle Scholar
  54. Rechinger KH (1983) Acht neue Arten der Gattung Dianthus (Caryophyllaceae) aus dem Gebiet der Flora Iranica. Plant Syst Evol 142:239–246CrossRefGoogle Scholar
  55. Rechinger KH (1988) Flora Iranica, No. 163. Caryophyllaceae II. Akademische Druck– u. Verlagsanstalt, GrazGoogle Scholar
  56. Rieseberg LH, Ellstrand NC (1993) What can morphological and molecular markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241Google Scholar
  57. Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527PubMedCrossRefGoogle Scholar
  58. Sang T (2002) Utility of low-copy nuclear gene sequences in plant phylogenetics. Crit Rev Biochem Mol Biol 37:121–147PubMedCrossRefGoogle Scholar
  59. Seppä P, Helanterä H, Trontti K, Punttila P, Chernenko A, Martin SJ, Sundström L (2011) The many ways to delimit species: hairs, genes and surface chemistry. Myrmecol News 15:31–41Google Scholar
  60. Shaw AJ, Gutkin MS, Bernstein BR (1994) Systematics of the tree mosses (Climacium, Musci); genetic and morphological evidence. Syst Bot 19:263–272CrossRefGoogle Scholar
  61. Sheikholeslami MR, Kouhpeyma M (2012) Structural analysis and tectonic evolution of the eastern Binalud Mountains, NE Iran. J Geodyn 61:23–46CrossRefGoogle Scholar
  62. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  63. Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170CrossRefGoogle Scholar
  64. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588PubMedCrossRefGoogle Scholar
  65. Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. Evol Biol 21:127–178CrossRefGoogle Scholar
  66. Swofford DL (2002). PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Press, Sunderland, MAGoogle Scholar
  67. Syring J, Willyard A, Cronn R, Liston A (2005) Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Amer J Bot 92:2086–2100CrossRefGoogle Scholar
  68. Ter Braak CJF, Smilauer P (2002) CANOCO Reference manual and user’s guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, IthacaGoogle Scholar
  69. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  70. Tu T, Dillon MO, Sun H, Wen J (2008) Phylogeny of Nolana (Solanaceae) of the Atacama and Peruvian deserts inferred from sequences of four plastid markers and the nuclear LEAFY second intron. Mol Phylog Evol 49:561–573CrossRefGoogle Scholar
  71. Valente LM, Savolainen V, Vargas P (2010) Unparalleled rates of species diversification in Europe. Proc R Soc B 277:1489–1497PubMedCrossRefGoogle Scholar
  72. Volkov RA, Komarova NY, Hemleben V (2007) Ribosomal DNA in plant hybrids: inheritance, rearrangement, expression. Syst Biodiv 5:261–276CrossRefGoogle Scholar
  73. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Ann Rev Ecol Syst 20:249–278CrossRefGoogle Scholar
  74. Whittall JB, Medina-Marino A, Zimmer EA, Hodges SA (2006) Generating single copy nuclear gene data for a recent adaptive radiation. Mol Phylog Evol 39:124–134CrossRefGoogle Scholar
  75. Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH (2009) The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci USA 106:13875–13879PubMedCrossRefGoogle Scholar
  76. Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL (2004) Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol 4-reductase from Medicago truncatula. Plant Physiol 134:979–994PubMedCrossRefGoogle Scholar
  77. Yan HF, Hao G, Hu CM, Ge XJ (2011) DNA barcoding in closely related species: A case study of Primula L. sect. Proliferae Pax (Primulaceae) in China. J Syst Evol 49:225–236CrossRefGoogle Scholar
  78. Zmasek CM, Eddy SR (2001) ATV: display and manipulation of annotated phylogenetic trees. Bioinformatics 17:383–384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Mohammad Farsi
    • 1
  • Maryam Behroozian
    • 1
  • Jamil Vaezi
    • 2
  • Mohammad Reza Joharchi
    • 1
  • Farshid Memariani
    • 1
  1. 1.Research Centre for Plant SciencesFerdowsi University of MashhadMashhadIran
  2. 2.Department of Biology, Faculty of SciencesShahid Chamran University of AhvazAhvazIran

Personalised recommendations