Plant Systematics and Evolution

, Volume 299, Issue 6, pp 1175–1184 | Cite as

Artificial hybridization of some Abies species

  • Andrej Kormutak
  • Božena Vooková
  • Vladimír Čamek
  • Terézia Salaj
  • Martin Galgóci
  • Peter Maňka
  • Peter Boleček
  • Roman Kuna
  • Jaroslav Kobliha
  • Ivan Lukáčik
  • Dušan Gömöry
Original Article

Abstract

Crossability relationships between six species of the Mediterranean, North American and Asian firs was tested using Abies alba and A. nordmanniana as female parents and A. alba, A. numidica, A. procera, A. grandis, and A. holophylla as pollen parents. An overwhelming majority of the crosses attempted was found to be compatible. In particular, it is true of the A. alba cross with A. numidica and those of A. nordmanniana with A. alba, A. numidica, A. procera, and A. holophylla. The crossing A. nordmanniana × A. grandis was the only exception producing empty seeds. Cytological study revealed the gametophytic incompatibility to be responsible for reproductive isolation of these species. At seedling level, all the interspecific crosses of A. nordmanniana surpassed in height growth self-pollinated control. The cross A. alba × A. numidica was comparable in this respect with control variants from open and self-pollination. Except for height growth, some characteristics of needle stomata are provided for individual crosses. The crosses A. nordmanniana with A. procera and A. holophylla represent unique interspecific combinations whose existence has not been reported yet. Based on needle stomata characteristics, the potential for increased resistance and drought tolerance of the hybrids with A. numidica involved as parental species is discussed.

Keywords

Abies Species Crossability Hybrid performance 

References

  1. Adams WT, Neale DB, Loopstra CA (1988) Verifying controlled crosses in conifer tree-improvement programs. Silvae Genet 37:147–151Google Scholar
  2. Aussenac G (2002) Ecology and ecophysiology of circum-mediterranean firs in the contex of climate change. Ann For Sci 59:823–832CrossRefGoogle Scholar
  3. Aytug B (1959) Abies equi-trojani Aschers. et Sinten. est une espéce dorigine hybride daprés létude des pollens. Pollen Spores 1:273–278Google Scholar
  4. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Ann Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  5. Critchfield WB (1988) Hybridization of the California firs. For Sci 34:139–151Google Scholar
  6. Demesure B, Sodzi N, Petit RJ (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131PubMedCrossRefGoogle Scholar
  7. Duffield JW, Snyder EB (1958) Benefits from hybridizing American forest tree species. J For 56:809–815Google Scholar
  8. Frederick DJ (1977) An integrated population of Abies grandis × A. concolor in Central Idaho and its relation to decay. Silvae Genet 26:8–10Google Scholar
  9. Galgoci M, Manka P, Kormutak A, Kuna R, Bolecek P, Gömöry D (2011) Height growth of selected interspecific hybrid fir seedlings (Abies sp.). In: symposium proceedings “dendrological days in Arboretum Mlynany SAS”, pp. 53–59. [in Slovak]Google Scholar
  10. Gathy PP (1957) A propos deľ hybride natural Abies concolor (Gord.) Engelman × A. grandis (Link.). Silvae Genet 6:186–190Google Scholar
  11. Greguss L (1988) Das Züchtungsprogramm zur Erhöhung der Widerstandsfähigkeit der Tanne durch Hybridisation und seine Realisierung. In: 5. IUFRO-Tannensymposium Zvolen, pp.167–177Google Scholar
  12. Greguss L (1992) Evaluation of early growth of interspecific hybrids of firs on the example of permanent testing plot Drieňova. Lesn Čas For J 38:223–238 [in Slovak]Google Scholar
  13. Hansen OK, Vendramin GG, Sebastian F, Edwards KJ (2005) Development of microsatellite markers in Abies nordmanniana (Stev.) Spach and cross-species amplification in the Abies genus. Mol Ecol Note 5:784–787CrossRefGoogle Scholar
  14. Harlow WM, Harrar ES (1958) Textbook of Dendrology. McGraw-Hill Book Company, Inc., New York-TorontoGoogle Scholar
  15. Hawley GJ, DeHayes DH (1985) Hybridization among several North American firs. I. Crossability. Can J For Res 15:42–49CrossRefGoogle Scholar
  16. Keng H, Little EL (1961) Needle characteristics of the hybrid pines. Silvae Genet 10:131–146Google Scholar
  17. Klaehn FU, Winieski JA (1962) Interspecific hybridization in the genus Abies. Silvae Genet 11:130–142Google Scholar
  18. Kormutak A (1985) Study on species hybridization within the genus Abies. Veda, BratislavaGoogle Scholar
  19. Kormutak A (1986) Gametophytic incompatibility between Abies cephalonica Loud. and A. concolor (Gord. et Glend.) Lindl. var. lowiana (Gord./Lemm.). Biologia 41:895–902Google Scholar
  20. Kormutak A (2004) Crossability relationships between some representatives of the Mediterranean, Northamerican and Asian firs (Abies sp.). Veda, BratislavaGoogle Scholar
  21. Kormutak A, Vookova B (2001) Early growth characteristics of some Abies hybrids. In: Müller-Starck G, Schubert R (eds) Genetic response of forest systems to changing environmental conditions. Kluwer Acad Publ, Dodrecht, pp 331–337CrossRefGoogle Scholar
  22. Kormutak A, Vookova B, Ziegenhagen B (2002) Reproductive isolation between colorado white fir (Abies concolor) and the mediterranean firs. Biologia 57:527–532Google Scholar
  23. Kormutak A, Vookova B, Ziegenhagen B, Know HY, Hong YP (2004) Chloroplast DNA variation in some representatives of the Asian, North American and mediterranean firs (Abies spp.). Silvae Genet 53:99–104Google Scholar
  24. Kormutak A, Lee SW, Hong KN, Yang BH, Hong YP (2008) Crossability relationships between Korean firs Abies koreana, A. nephrolepis, and A. holophylla and some other representatives of the genus Abies. Biologia Sect Bot 63:94–99CrossRefGoogle Scholar
  25. Kormutak A, Vookova B, Salaj T, Camek V, Galgoci M, Manka P, Bolecek P, Kuna R, Kobliha J (2012) Crossability relationships between noble, manchurian and caucasian firs. Acta Biol Cracoviensia, Ser Bot 54:1–4Google Scholar
  26. Krüssman G (1983) Handbüch der Nadelgehölze. Verlag Paul Prey, Berlin und HamburgGoogle Scholar
  27. Krylov GV, Maradudin II, Micheev NI, Kozakova NF (1986) Firs. Agropromizdat, Moscow [in Russian]Google Scholar
  28. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Nat Acad Sci USA 99:14590–14594PubMedCrossRefGoogle Scholar
  29. Liu TS (1971) A monograph of the genus Abies. National Taiwan University, TaipeiGoogle Scholar
  30. Mattfeld J (1926) Die Europäischen und Mediterranen Abies Arten. Die Pflanzen-Areale 1:22–29Google Scholar
  31. Mayer H (1981) Mediterra-montage Tannen-Arten und ihre Bedeutung für Anbauversuche in Mitteleuropa. Cbl Ges Forstw 98:223–241Google Scholar
  32. Mergen F, Burley J, Simpson BA (1964) Artificial hybridization in Abies. Der Züchter 34:242–251Google Scholar
  33. Mitsopoulos DJ, Panetsos CP (1987) Origin of variation of fir forests in Greece. Silvae Genet 36:1–15Google Scholar
  34. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acid Res 8:4231–4235CrossRefGoogle Scholar
  35. Němec B et al (1962) Botanical microtechnique. Nakladatelství ČSAV, Prague [in Czech]Google Scholar
  36. Parducci L, Szmidt AE (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808CrossRefGoogle Scholar
  37. Rehder A (1958) Manual of cultivated trees and shrubs. The Macmillan Company, New YorkGoogle Scholar
  38. Sargent CS (1898) The silva of North America. Houghton and Mifflin and Co., BostonGoogle Scholar
  39. SAS (2004) SAS/STATR 9.1 User‘s Guide. SAS Institute Inc., Cary, NCGoogle Scholar
  40. Silen RR, Critchfield WB, Franklin JF (1965) Early verification of a hybrid between noble and California red firs. For Sci 11:460–462Google Scholar
  41. Tokar F (1973) Evaluation of the exotic firs in Slovakia from the standpoint of their growth and planting possibilities. Acta Musei Silesia Ser Dend 1:51–75 [in Slovak]Google Scholar
  42. Vendramin GG, Ziegenhagen B (1997) Characterisation and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864PubMedCrossRefGoogle Scholar
  43. Vidakovic M (1977) Some morphological characteristics of Pinus × nigrosylvis (P. nigra × P. sylvestris). Ann For 8:15–27Google Scholar
  44. Wright JW (1957) Cultivated firs in the Philadelphia area. Morris Arb Bull 8:11–18Google Scholar
  45. Ziegenhagen B, Scholz F, Madaghiele A, Vendramin GG (1998) Chloroplast microsatellites as markers for paternity analysis in Abies alba. Can J For Res 28:317–321Google Scholar
  46. Ziegenhagen B, Fady B, Kuhlenkamp V, Liepelt S (2005) Differentiating groups of Abies species with a simple molecular marker. Silvae Genet 54:123–126Google Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Andrej Kormutak
    • 1
  • Božena Vooková
    • 1
  • Vladimír Čamek
    • 1
  • Terézia Salaj
    • 1
  • Martin Galgóci
    • 1
  • Peter Maňka
    • 1
  • Peter Boleček
    • 2
  • Roman Kuna
    • 2
  • Jaroslav Kobliha
    • 3
  • Ivan Lukáčik
    • 1
  • Dušan Gömöry
    • 4
  1. 1.Institute of Plant Genetics and BiotechnologySlovak Academy of SciencesNitraSlovakia
  2. 2.Constantine Philosopher University in NitraNitraSlovakia
  3. 3.Czech University of Life Sciences PraguePragueCzech Republic
  4. 4.Technical University in ZvolenZvolenSlovakia

Personalised recommendations