Advertisement

Plant Systematics and Evolution

, Volume 299, Issue 6, pp 1107–1118 | Cite as

Molecular and phytochemical evidence for the taxonomic integrity of Salix alba, S. fragilis, and their hybrid S. × rubens (Salicaceae) in mixed stands in SE Germany

  • Christoph OberprielerEmail author
  • Lena Dietz
  • Christine Harlander
  • Jörg Heilmann
Original Article

Abstract

AFLP fingerprinting, nrDNA sequencing, and HPLC of phenolic compounds from bark samples was used to assess the intensity of hybridisation in two mixed stands of Salix alba, S. fragilis, and their hybrid S. × rubens (Salicaceae) along the Danube in the vicinity of Regensburg (SE Germany). AFLP analyses of 130 individuals from two mixed and two pure strands of the parental species resulted in a matrix of 337 polymorphic loci that was analysed with Bayesian cluster algorithms implemented in the software programmes Structure and NewHybrids. The results, together with sequence polymorphisms of the nrDNA ITS1 + 5.8S region, indicate that the three taxa are distinctly separated and that only a few F2-hybrids and no backcrosses to the parental species are present in the surveyed mixed stands. These findings were corroborated by HPLC studies of the phenolic compounds from bark samples that were carried out for the same individuals. A multivariate statistical analysis of relative peak areas of chromatograms (PCA, principal component analysis) indicates the clear separation of parental and the intermediate position of S. × rubens individuals.

Keywords

AFLP fingerprinting Chemical defence Hybridisation nrDNA ITS Phenolic compounds Salicaceae Salix Willow 

Notes

Acknowledgments

The technical assistance of Peter Hummel and the support by Dr. Roland Greiner and Manuela Bog in the molecular laboratory of the Plant Evolution and Systematics group (Institute of Botany) at the University of Regensburg is gratefully acknowledged. Special thanks go to Dr. Guido Jürgenliemk, Dr. Magdalena Motyl and Dr. Anne Freischmidt (Institute of Pharmaceutical Biology) for fruitful discussions and introduction to HPLC analysis. Jürgen Klotz (Regensburg) provided valuable information concerning the occurrence of mixed and pure stands of S. alba, S. fragilis, and S. × rubens in the surroundings of Regensburg. Two anonymous reviewers are acknowledged for their most valuable comments on a former version of the manuscript that improved this contribution considerably.

References

  1. Anderson EC (2008) Bayesian inference of species hybrids using multilocus dominant genetic markers. Philos Trans R Soc B 363:2841–2850CrossRefGoogle Scholar
  2. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  3. Argus GW (1974) Experimental study of hybridization and pollination in Salix (willow). Can J Bot (Rev. Can. Bot.) 52:1613–1619CrossRefGoogle Scholar
  4. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, OxfordGoogle Scholar
  5. Arnold ML (2006) Evolution trough genetic exchange. Oxford University Press, OxfordGoogle Scholar
  6. Beismann H, Barker JHA, Karp A, Speck T (1997) AFLP analysis sheds light on the distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol 6:989–993CrossRefGoogle Scholar
  7. Belyaeva I (2009) Nomenclature of Salix fragilis L. and a new species, S. euxina (Salicaceae). Taxon 58:1344–1348Google Scholar
  8. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349CrossRefGoogle Scholar
  9. Chmelar J, Meusel W (1976) Die weiden europas. Ziemsen Verlag, Lutherstadt WittenbergGoogle Scholar
  10. De Cock K, Lybeer B, Vander Mijnsbrugge K, Zwaenepoel A, Van Petehem P (2003) Diversity of the willow complex Salix alba-S. × rubens-S.fragilis. Silvae Genet 52:148–153Google Scholar
  11. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  12. Funk VA, Chan R, Keeley SC (2004) Insights into the evolution of the tribe Arctoteae (Compositae: subfamily Cichorioideae s.s.) using trnL-F, ndhF, and ITS. Taxon 53:637–655CrossRefGoogle Scholar
  13. Füssel U, Dötterl S, Jürgens A, Aas G (2007) Inter- and intraspecific variation in floral scent in the genus Salix and its implication for pollination. J Chem Ecol 33:749–765PubMedCrossRefGoogle Scholar
  14. Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366PubMedCrossRefGoogle Scholar
  15. Hörandl, E., Florineth, F. & Hadacek, F. (2002): Weiden in Österreich und angrenzenden Gebieten. Eigenverlag des Arbeitsbereiches Ingenieurbiologie und Landschaftsbau, Universität Wien, ViennaGoogle Scholar
  16. Jiggins CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends Ecol Evol 15:250–255PubMedCrossRefGoogle Scholar
  17. Johnston JA, Wesselingh RA, Bouck AC, Donovan LA, Arnold MA (2001) Intimately linked or hardly speaking? The relationship between genotype and environmental gradients in a Louisiana Iris hybrid population. Mol Ecol 10:673–681PubMedCrossRefGoogle Scholar
  18. Kehl A, Aas G, Rambold G (2008) Genotypical and multiple phenotypical traits discriminate Salix × rubens Schrank clearly from its parent species. Plant Syst Evol 275:169–179CrossRefGoogle Scholar
  19. King RA, Harris SL, Karp A (2010) Characterisation and inheritance of nuclear microsatellite loci for use in population studies of the allotetraploid Salix alba-Salix fragilis complex. Tree Genet & Genomes 6:247–258CrossRefGoogle Scholar
  20. Koopman WJM (2005) Phylogenetic signal in AFLP data sets. Syst Biol 54:197–217PubMedCrossRefGoogle Scholar
  21. Kovach, W. L. (1999): MVSP - A MultiVariate Statistical Package for Windows, version 3.1. Kovach Computing Services Google Scholar
  22. Kyhos DW, Clark C, Thompson WC (1981) The hybrid nature of Encelia laciniata (Compositae: Heliantheae) and control of population composition by post-dispersal selection. Syst Bot 6:399–411CrossRefGoogle Scholar
  23. Lautenschlager-Fleury D, Lautenschlager-Fleury E (1993) Zur Unterscheidung von Salix fragilis von ihrem Bastard Salix × rubens. Bauhina 11:35–36Google Scholar
  24. Lautenschlager-Fleury D, Lautenschlager-Fleury E (1994) Die Weiden von Mittel- und Nordeuropa., Bestimmungsschlüssel und Artbeschreibung für die Gattung Salix, Birkhäuser Verlag, BaselGoogle Scholar
  25. Meikle RD (1984) Willows and poplars of Great Britain and Ireland. Botanical Society of the British Isles, LondonGoogle Scholar
  26. Meister J, Hubaishan M, Kilian N, Oberprieler C (2006) Temporal and spatial diversification of the shrub Justicia areysiana Deflers (Acanthaceae) endemic to the monsoon affected coastal mountains of the southern Arabian Peninsula. Plant Syst Evol 262:153–171CrossRefGoogle Scholar
  27. Milne RI, Abbott RJ, Wolff K, Chamberlain DF (1999) Hybridization among sympatric species of Rhododendron (Ericaceae) in Turkey: morphological and molecular evidence. Am J Bot 86:1776–1785PubMedCrossRefGoogle Scholar
  28. Milne RI, Terzioglu S, Abbott RJ (2003) A hybrid zone dominated by fertile F1s: maintenance of species barriers in Rhododendron. Mol Ecol 12:2719–2729PubMedCrossRefGoogle Scholar
  29. Nahrstedt A, Schmidt M, Jäggi R, Metz J, Khayyal MT (2007) Willow bark extract: the contribution of polyphenols to the overall effect. Wien Med Wochenschr 157:348–351PubMedCrossRefGoogle Scholar
  30. Oberprieler C, Eder C, Meister J, Vogt R (2011) AFLP fingerprinting suggests the allopolyploid origin of two members of the Leucanthemum vulgare aggregate (Compositae, Anthemideae) in Central Europe. Nord J Bot 29:370–377CrossRefGoogle Scholar
  31. Ochsmann J (2000) Morphologische und molekularsystematische Untersuchungen an der Centaurea stoebe L.-Gruppe (Asteraceae-Cardueae) in Europa. Diss Bot 324:1–242Google Scholar
  32. Palme AE, Semerikov V, Lascoux M (2003) Absence of geographical structure of chloroplast DNA variation in sallow, Salix caprea L. Heredity 91:465–474PubMedCrossRefGoogle Scholar
  33. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  34. Pohjamo SP, Hemming JE, Willför SM, Reunanen MHT, Holmborn BR (2003) Phenolic extractives in Salix caprea wood and knots. Phytochem 63:165–169CrossRefGoogle Scholar
  35. Pritchard, J. K. (2010): Documentation for structure software: Version 2.3. Software documentation from http://pritch.bsd.uchicago.edu/structure.html
  36. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  37. Rogstad SH (2003) Plant DNA extraction using silica. Plant Mol Biol Report 21:463CrossRefGoogle Scholar
  38. Rothmaler W (2005) Exkursionsflora von Deutschland/Gefäßpflanzen: Kritischer Band. Spektrum Akademischer Verlag, BerlinGoogle Scholar
  39. Salick J, Pfeiffer E (1999) The interplay of hybridization and clonal reproduction in the evolution of willows experiments with hybrids of S. eriocephala [R] & S. exigua [X] and S. eriocephala & S. petiolaris [P]. Plant Ecol 141:163–178CrossRefGoogle Scholar
  40. Schiechtl HM (1992) Weiden in der Praxis. Patzer Verlag, BerlinGoogle Scholar
  41. Triest L (2001) Hybridization in staminate and pistillate Salix alba and S. fragilis (Salicaceae): morphology versus RAPDs. Plant Syst Evol 226:143–153CrossRefGoogle Scholar
  42. Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between fegree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  43. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acid Res 23:4407–4414PubMedCrossRefGoogle Scholar
  44. Zha H-G, Milne RI, Sun H (2010) Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China. Ann Bot 105:89–100PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Christoph Oberprieler
    • 1
    Email author
  • Lena Dietz
    • 1
  • Christine Harlander
    • 1
  • Jörg Heilmann
    • 2
  1. 1.Institute of BotanyUniversity of Regensburg, UniversitätsstrRegensburgGermany
  2. 2.Institute of PharmacyUniversity of RegensburgRegensburgGermany

Personalised recommendations