Plant Systematics and Evolution

, Volume 299, Issue 6, pp 1065–1074 | Cite as

Genetic structure of three Sorbus latifolia (Lam.) Pers. taxa endemic to northern Bavaria

  • Martin Feulner
  • Sigrid Liede-Schumann
  • Ulrich Meve
  • Alfons Weig
  • Gregor Aas
Original Article


The Franconian Alb (Bavaria, Germany) is rich in endemic Sorbus taxa, considered as apomictic microspecies and derived by hybridization between Sorbus aria aggregate and Sorbus torminalis (Sorbus latifolia aggregate). Molecular studies using the AFLP technique, neighbour joining, Bayesian clustering, principal coordinate analysis (PCo) and voucher studies were used to investigate genetic structure and origin of adult plants and cultivated offspring of three endemic S. latifolia taxa, namely Sorbus cordigastensis, Sorbus franconica and Sorbus adeana and probable parental species from the S. aria agg. and S. torminalis. The S. latifolia taxa, adults and progeny, showed low genetic variability and a more or less clonal structure, confirming an apomictic mode of reproduction. The investigated S. latifolia taxa were remarkably different among each other, confirming their status as microspecies. The AFLP data confirmed the hybrid origin of the S. latifolia taxa, they were 1.3–1.5 times more closely related to S. aria agg. than to S. torminalis. The S. aria agg. showed a complicate genetic structure and fell into four main groups, two intermediate groups besides Sorbus pannonica and Sorbus aria sensu stricto (S. aria s.str.). Some progeny of S. pannonica was more variable than expected and clustered partly with other groups indicating gene flow within S. aria agg. Different subgroups of the S. aria aggregate may be parental for the S. latifolia taxa, contributing to the remarkable genetic distances between them.


Sorbus Northern Bavaria Genetic structure Parental species identification AFLP 



The financial support of this study by the Oberfrankenstiftung Bayreuth (OFS Project-No. 03086) is gratefully acknowledged. We thank Michaela Hochholzer (DNA Analytics, University of Bayreuth) for conducting AFLP laboratory work, and Francesco Balao for supporting statistical analysis. Martin Lepší and Norbert Meyer deserve thanks for determination of herbarium material.

Supplementary material

606_2013_778_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)


  1. Aas G, Kohles M (2011) Verbreitung, Häufigkeit und Verjüngung von Sorbus cordigastensis (Kordigast-Mehlbeere) in der nördlichen Frankenalb. Tuexenia 31:59–71Google Scholar
  2. Aas G, Maier J, Baltisberger M, Metzger S (1994) Morphology, isozyme variation, cytology, and reproduction of hybrids between Sorbus aria (L.) Crantz and S. torminalis (L.) Crantz. Bot Helv 104:195–214Google Scholar
  3. Challice J, Kovanda M (1978) Flavonoids as markers of taxonomic relationships in the genus Sorbus in Europe. Preslia 50:305–320Google Scholar
  4. Clarke KR, Gorley RN (2001) Primer v5: user manual/tutorial. Primer-E Ltd., Plymouth Marine Laboratory, UKGoogle Scholar
  5. Düll R (1959) Unsere Ebereschen und ihre Bastarde. Wittenberg, ZiemsenGoogle Scholar
  6. Düll R (1961) Die Sorbus-Arten und ihre Bastarde in Bayern und Thüringen. Ber Bayer Bot Ges 34:11–65Google Scholar
  7. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587Google Scholar
  8. Gugerli F, Brodbeck S, Holderegger R (2008) Utility of multilocus genotypes for taxon assignment in stands of closely related European white Oaks from Switzerland. Ann of Bot-London 102:855–863CrossRefGoogle Scholar
  9. Kárpáti Z (1960) Die Sorbus-Arten Ungarns und der angrenzenden Gebiete. Feddes Repert 62:71–334Google Scholar
  10. Kutzelnigg H (1995) Sorbus. In: Conert HJ et al (eds): Gustav Hegi, Illustrierte Flora von Mitteleuropa 4 (2B): Spermatophyta: Angiospermae: Dicotyledones 2 (3). Rosaceae 2. Blackwell, Berlin, pp 328–385Google Scholar
  11. Kutzelnigg H (2005) Sorbus L em Crantz—Mehlbeere, Eberesche, Elsbeere, Speierling. In: Jäger E J, Rothmaler KW (eds) Exkursionsflora von Deutschland 4, Gefäßpflanzen, Kritischer Band, 9th edn. Spektrum, Heidelberg, pp 403–406Google Scholar
  12. Lepší M, Vít P, Lepší P, Boublík K, Kolář F (2009) Sorbus portae-bohemicae and Sorbus albensis, two new endemic apomictic species recognized based on a revision of Sorbus bohemica. Preslia 8:63–89Google Scholar
  13. Liljefors A (1955) Cytological studies in Sorbus. Acta Horti Bergiani 17:47–113Google Scholar
  14. Meyer N, Meierott L, Schuwerk H, Angerer O (2005) Beiträge zur Gattung Sorbus in Bayern. Ber Bay Bot G Sonderband 5–216Google Scholar
  15. Nei M (1972) Genetic distance between populations. Am Nat 106:283–291CrossRefGoogle Scholar
  16. Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol 3:93–114Google Scholar
  17. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  18. Rich TCG, Houston L, Robertson A, Proctor MCF (2010) Whitebeams, Rowans and Service Trees of Britain and Ireland. A monograph of British and Irish Sorbus L. Botanical Society of the British Isles in association with National Museum Wales, LondonGoogle Scholar
  19. Robertson A, Rich TCG, Allen AM, Houston L, Roberts C, Bridle JR, Harris SA, Hiscock JS (2010) Hybridization and polyploidy as drivers of continuing evolution and speciation in Sorbus. Mol Ecol 19:1675–1690PubMedCrossRefGoogle Scholar
  20. Snow R (1963) Alcoholic hydrochloric acid-carmine as stain for chromosomes in squash preparations. Stain Technol 38:9–13PubMedGoogle Scholar
  21. Talent N (2009) Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae. Theory Biosci 128:121–138PubMedCrossRefGoogle Scholar
  22. Van de Peer Y, De Wachter Y (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 10:569–570Google Scholar
  23. Vos P, Hogers R, Bleeker M (1995) AFLP: a new technique for DNA fingerprinting. NAR 23:4407–4414PubMedCrossRefGoogle Scholar
  24. Yeh F, Yang R (1999) POPGENE. Microsoft Window-based Freeware for Population Genetic Analysis. Version 1.31, University of Alberta: Edmonton, Alberta, CanadaGoogle Scholar

Copyright information

© Springer-Verlag Wien 2013

Authors and Affiliations

  • Martin Feulner
    • 1
  • Sigrid Liede-Schumann
    • 1
  • Ulrich Meve
    • 1
  • Alfons Weig
    • 2
  • Gregor Aas
    • 3
  1. 1.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany
  2. 2.DNA analytics and EcoinformaticsBayreuthGermany
  3. 3.Ecological-Botanical gardenUniversity of BayreuthBayreuthGermany

Personalised recommendations