Advertisement

Plant Systematics and Evolution

, Volume 299, Issue 2, pp 471–479 | Cite as

Molecular cytogenetic analysis of Siberian Larix species by fluorescence in situ hybridization

  • Olga V. Goryachkina
  • Ekaterina D. Badaeva
  • Elena N. Muratova
  • Alexandr V. Zelenin
Short Communication

Abstract

Karyotypes of three Larix species (L. sibirica, L. gmelinii, and L. cajanderi) were analyzed using fluorescence in situ hybridization (FISH) with 45S and 5S ribosomal RNA gene probes and 4′,6-diamidino-2-phenylindole (DAPI) staining. Two major 45S ribosomal DNA (rDNA) loci (per haploid genome) have been observed in the intercalary regions of two metacentric chromosomes, III and IV, of L. sibirica; in addition to them, minor nucleolus organizing regions (NORs) were mapped in pericentromeric regions of chromosomes I, II, VI, and XII. Two closely related species, L. gmelinii and L. cajanderi, showed similar hybridization patterns; both species possessed an additional major locus of 45S rDNA in the distal region of the long arm of submetacentric chromosome VII that is absent in L. sibirica. Only one locus of the 5S rDNA was found in all larch species we studied; it was located in the distal region of the chromosome III short arm, which also carried the major NOR in the opposite arm. This chromosome containing major loci of the two ribosomal RNA gene families can serve as a marker of the genus Larix. The intra- and interspecific karyotype diversity in the genus Larix is discussed.

Keywords

Chromosome Karyotype FISH 45S rDNA 5S rDNA Larix 

Abbreviations

FISH

Fluorescence in situ hybridization

DAPI

4′,6-Diamidino-2-phenylindole

SSC

Saline-sodium citrate

PBS

Phosphate-buffered saline

NOR

Nucleolus organizing region

rDNA

Ribosomal DNA

Mbp

Million base pairs

Notes

Acknowledgments

The authors thank Aleksander P. Isaev Ph.D. (Institute for Biological Problems of Cryolithozone SB RAS, Yakutsk), Alexey P. Barchenkov Ph.D. (V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk), and Candagdorj Jamiyansuren Ph.D. (Institute of Botany, Mongolian Academy of Sciences, Ulaanbaatar) for supplying the seed samples. This work was supported by grant no. 76 from the Integration Program of the Siberian Branch of the Russian Academy of Sciences and the Russian Foundation for Basic Research (Projects No. 11-04-00063 and 10-04-90780).

References

  1. Abaimov AP (2010) Geographical distribution and genetics of Siberian larch species. In: Osawa A, Zyryanova OA, Matsuura Y, Kajimoto T, Wein RW (eds.) Permafrost Ecosystems: Siberian Larch Forests. Ser.: Ecological Studies, 209, pp. 41–58Google Scholar
  2. Abaimov AP, Koropachinsky IYu (1984) Gmelin and Cajander larches. Novosibirsk, Nauka, p 120 Google Scholar
  3. Bobrov EG (1972) History and systematics of Larix. Nauka, Leningrad (in Russian)Google Scholar
  4. Bogunic F, Siljak-Yakovlev S, Muratovic E, Ballian D (2011) Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. Plant Biol 13:194–200PubMedCrossRefGoogle Scholar
  5. Cai Q, Zhang DM, Liu ZL, Wang XR (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97(5):715–722PubMedCrossRefGoogle Scholar
  6. Dylis NV (1961) Larch of East Siberia and Far East. USSR Academy of Sciences, Moscow (in Russian)Google Scholar
  7. Farjon A (2001) World checklist and bibliography of Conifers. Royal Botanic Gardens, KewGoogle Scholar
  8. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7(7):1869–1885PubMedCrossRefGoogle Scholar
  9. Gerlach WL, Dyer TA (1980) Sequence organization of the repeated units in the nucleus of wheat which contains 5S-rRNA genes. Nucleic Acids Res 8(21):4851–4865PubMedCrossRefGoogle Scholar
  10. Hizume M (1988) Karyomorphological studies in the family Pinaceae. Mem Fac Educ Ehime University. Ser III. Natural Sci 8(2):1–108Google Scholar
  11. Hizume M, Tanaka A (1990) Fluorescent chromosome bandings in two American larches, Larix occidentalis and L. laricina. Kromosomo II 58:1979–1987Google Scholar
  12. Hizume M, Tominaga K, Kondo K, Gu Z, Yue Z (1993) Fluorescent chromosome banding in six taxa of Eurasian Larix, Pinaceae. Kromosomo II 69:2342–2354Google Scholar
  13. Hizume M, Kuzukawa Y, Konda K, Yang Q, Hong D, Tanaka R (1995) Localization of rDNAs and fluorescent bandings in chromosomes of Larix potaninii var. macrocarpa collected in Sichuan, China. Kromosomo II 78:2689–2694Google Scholar
  14. Hizume M, Kondo K, Zhang S, Hong D (1998) Fluorescence chromosome banding in a Chinese larch. Larix chinensis Beissn. Chromosome Sci 2(2):95–98Google Scholar
  15. Hizume M, Shibata F, Maruyama Y, Kondo T (2001) Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc. Chromosoma 110:345–351PubMedCrossRefGoogle Scholar
  16. Hizume M, Shibata F, Matsumoto A et al (2002) Tandem repeat DNA localizing on the proximal DAPI bands of chromosomes in Larix, Pinaceae. Genome 45:777–783PubMedCrossRefGoogle Scholar
  17. Islam-Faridi NM, Nelson CD, Kubisiak TL et al. (2003) Loblolly pine Karyotype using FISH and DAPI positive banding. Proc. of the 27th Southern Forest Tree Improv. Conf. Stillwater, Oklahoma, pp. 184–188Google Scholar
  18. Karvonen P, Karjalainen M, Savolainen O (1993) Ribosomal RNA genes in Scots pine (Pinus sylvestris L): chromosomal organization and structure. Genetica 88(1):59–68CrossRefGoogle Scholar
  19. Liu Z, Zhang D, Hong D, Wang X (2003) Chromosomal localization of 5S and 18S–5.8S-25S ribosomal DNA sites in five Asian pines using fluorescence in situ hybridization. Theor Appl Genet 106:198–204PubMedGoogle Scholar
  20. Liu B, Zhang SG, Zhang Y, Lan TY, Qi LW, Song WQ (2006) Molecular cytogenetic analysis of four Larix species by bicolor fluorescence in situ hybridization and DAPI banding. Int J Plant Sci 167:367–372CrossRefGoogle Scholar
  21. Liu B, Qi L, Chen R, Song W (2007) Multicolor fluorescence in situ hybridization with combinatorial labeling probes enables a detailed karyotype analysis of Larix principis-rupprechtii. Biol Res 40:23–28PubMedCrossRefGoogle Scholar
  22. Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416CrossRefGoogle Scholar
  23. Muratova EN (1991) Karyological studies in Larix sibirica (Pinaceae) from different parts of its area. Botanicheskyi zhurnal 76:1586–1595 (in Russian)Google Scholar
  24. Muratova EN (1994) Chromosome polymorphism in the natural populations of Gmelin larch, Larix gmelinii (Rupr.) Rupr. Cytologija i Genetika 28:14–22 (in Russian)Google Scholar
  25. Muratova EN, Sedelnikova TS, Pimenov AV, Karpjuk TV, Sizikh OA, Kvitko (Goryachkina) OV (2007) Karyological analysis of larch species from Siberia and the Far East of Russia. For Sci Tech 3:89–94Google Scholar
  26. Nkongolo KK, Klimaszewska K (1995) Cytological and molecular relationships between Larix decidua, L. leptolepis and Larix x eurolepis: identification of species-specific chromosoms and synchronization of mitotic cells. Theor Appl Genet 90:827–834CrossRefGoogle Scholar
  27. Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132CrossRefGoogle Scholar
  28. Patschke W (1913) Über die extratropische ostasiatischen Coniferen und ihre Bedeutung für die pflanzengeographische Gliederung von Ostasien. Bot Jahrb 48:651–655Google Scholar
  29. Polezhaeva MA, Lascoux M, Semerikov VL (2010) Cytoplasmic DNA variation and biogeography of Larix Mill. in Northeast Asia. Mol Ecol 19:1239–1252PubMedCrossRefGoogle Scholar
  30. Ribeiro T, Barão A, Viegas W, Morais-Cecíli L (2008) Molecular cytogenetics of forest trees. Cytogenet Genome Res 120(3–4):220–227PubMedCrossRefGoogle Scholar
  31. Semerikov VL, Polezhaeva MA (2007) Mitochondrial DNA variation pattern in larches of eastern Siberia and the Far East. Russ J Genet 43:646–652CrossRefGoogle Scholar
  32. Shibata F, Hizume M (2008) Comparative FISH karyotype analysis of 11 Picea species. Cytologia 73(2):203–211CrossRefGoogle Scholar
  33. Simak M (1966) Karyotype analysis of Larix griffithiana Carr. Hereditas 56:137–141CrossRefGoogle Scholar
  34. Sukachev VN (1924) To the history of larch development. In: The forest issues. Moscow-Leningrad, Novaya derevnya. pp. 12–44 (in Russian)Google Scholar
  35. Wei X, Wang X (2003) Phylogenetic split of Larix: evidence from paternally inherited cpDNA trnT-trnF region. Plant Syst Evol 239:67–77CrossRefGoogle Scholar
  36. Zhang SG, Yang WH, Han SY, Han BT, Li MX, Qi LW (2010) Cytogenetic analysis of reciprocal hybrids and their parents between Larix leptolepis and Larix gmelinii: implications for identifying hybrids. Tree Genet Genomes 6(3):405–412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Olga V. Goryachkina
    • 1
  • Ekaterina D. Badaeva
    • 2
  • Elena N. Muratova
    • 1
  • Alexandr V. Zelenin
    • 2
  1. 1.V. N. Sukachev Institute of ForestRussian Academy of Sciences, Siberian BranchKrasnoyarskRussia
  2. 2.V. A. Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations