Plant Systematics and Evolution

, Volume 299, Issue 3, pp 481–486 | Cite as

Autogamous fruit set in a mycoheterotrophic orchid Cyrtosia septentrionalis

  • Kenji Suetsugu
Original Article


Non-photosynthetic mycorrhizal plants (i.e. mycoheterotrophs) have long attracted interest due to their bizarre morphological features. Nonetheless, few studies have reported on the reproductive biology of these mycoheterotrophs. In the present study, the pollination mechanism of the mycoheterotrophic orchid Cyrtosia septentrionalis (Rchb.f.) Garay in central Japan was investigated. In spite of their showy appearance, flowers of C. septentrionalis failed to attract pollinators and possessed an effective self-pollination system, in which the rostellum was poorly developed and lost the ability to physically separate the stigma and pollinia, thus allowing contact between them. Comparable fruit set ratio was also obtained in bagged plants and following induced autogamous and xenogamous pollinations. These results indicate that the species is capable of outbreeding, but self-compatible and not pollinator-limited for fruit set under natural condition. These pollination mechanisms may be adaptations to survive the shaded and sparse herbaceous understory, where insect-pollinators are limited.


Autogamy Mycoheterotroph Orchidaceae Pollination biology Reproductive biology Self-pollination 



I thank Sayoko Mori for fieldwork support, Dr. Utsugi Jinbo for moth larvae identification; and Drs. Makoto Kato and Atsushi Kawakita for constructive advises on this study.


  1. Bidartondo MI (2005) The evolutionary ecology of myco-heterotrophy. New Phytol 167:335–352PubMedCrossRefGoogle Scholar
  2. Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806PubMedCrossRefGoogle Scholar
  3. Bonatti PM, Sgarbi E, Del Prete C (2006) Gynostemium micromorphology and pollination in Epipactis microphylla (Orchidaceae). J Plant Res 119:431–437PubMedCrossRefGoogle Scholar
  4. Bory S, Grisoni M, Duval M-, Besse P (2008) Biodiversity and preservation of vanilla: present state of knowledge. Genet Resour Crop Evol 55:551–571CrossRefGoogle Scholar
  5. Cameron KM, Carmen Molina M (2006) Photosystem II gene sequences of psbB and psbC clarify the phylogenetic position of Vanilla (Vanilloideae, Orchidaceae). Cladistics 22:239–248CrossRefGoogle Scholar
  6. Catling PM (1990) Auto-pollination in the Orchidaceae. Orchid Biology: Reviews and Perspectives 5:121–158Google Scholar
  7. Cozzolino S, Schiestl FP, Muller A, De Castro O, Nardella AM, Widmer A (2005) Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers? Proc R Soc B 272:1271–1278PubMedCrossRefGoogle Scholar
  8. Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278CrossRefGoogle Scholar
  9. Darwin C (1862) The various contrivances by which orchids are fertilised by insects. John Murray, LondonGoogle Scholar
  10. Hamada M (1939) Studien uber die Mykorrhiza von Galeola septentrionalis Reichb. f. Ein neuer Fall der Mykorrhiza-Bildung durch intraradicale Rhizomorpha. Jpn J Bot 10:151–211Google Scholar
  11. Herrera CM (1995) Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228CrossRefGoogle Scholar
  12. Herrera CM (1997) Thermal biology and foraging responses of insect pollinators to the forest floor irradiance mosaic. Oikos 78:601–611CrossRefGoogle Scholar
  13. Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? Proc R Soc B 262:343–348CrossRefGoogle Scholar
  14. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev Camb Philos Soc 81:219–235PubMedCrossRefGoogle Scholar
  15. Klooster MR, Culley TM (2009) Comparative Analysis of the Reproductive Ecology of Monotropa and Monotropsis: two Mycoheterotrophic Genera in the Monotropoideae (Ericaceae). Am J Bot 96:1337–1347. doi: 10.3732/ajb.0800319 PubMedCrossRefGoogle Scholar
  16. Leake JR (1994) Tansley Review No.69. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216CrossRefGoogle Scholar
  17. Lee HL, Sodhi NS, Elmqvist T (2001) Bee diversity along a disturbance gradient in tropical lowland forests of south-east Asia. J Appl Ecol 38:180–192CrossRefGoogle Scholar
  18. Liu KW, Liu ZJ, Huang L, Li LQ, Chen LJ, Tang GD (2006) Pollination: self-fertilization strategy in an orchid. Nature 441:945–946PubMedCrossRefGoogle Scholar
  19. Nilsson LA (1992) Orchid pollination biology. Trends Ecol Evol 7:255–259CrossRefGoogle Scholar
  20. Peter CI, Johnson SD (2009) Autonomous self-pollination and pseudo-fruit set in South African species of Eulophia (Orchidaceae). S Afr J Bot 75:791–797CrossRefGoogle Scholar
  21. Renner SS (2006) Rewardless flowers in the angiosperms and the role of insect cognition in their evolution. From Specialization to Generalization, Plant-Pollinator Interactions, pp 123–144Google Scholar
  22. Soto Arenas MA (1999) Filogeografia y recursos genéticos de las vainillas de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, MexicoGoogle Scholar
  23. Soto Arenas MA (2003) Vanilla. Genera Orchidacearum 3:402Google Scholar
  24. Suetsugu K, Kawakita A, Kato M (2008) Host range and selectivity of the hemiparasitic plant Thesium chinense (Santalaceae). Ann Bot 102:49–56PubMedCrossRefGoogle Scholar
  25. Suetsugu K, Takeuchi Y, Kazuyoshi F, Kato M (2012a) Host selectivity, haustorial anatomy and impact of the invasive parasite Parentucellia viscosa on floodplain vegetative communities in Japan. Bot J Linn Soc 170:69–78CrossRefGoogle Scholar
  26. Suetsugu K, Kawakita A, Kato M (2012b) Evidence for specificity to Glomus group Ab in two Asian mycoheterotrophic Burmannia species. Plant Species Biol. doi: 10.1111/j.1442-1984.2012.00387.x
  27. Takahashi H, Nishio E, Hayashi H (1993) Pollination biology of the saprophytic species Peterosavia sakuraii (Makino) van Steenis in Central Japan. J Plant Res 106:213–217CrossRefGoogle Scholar
  28. Tałałaj I, Brzosko E (2008) Selfing potential in Epipactis palustris, E. helleborine and E. atrorubens (Orchidaceae). Plant Syst Evol 276:21–29CrossRefGoogle Scholar
  29. Terashita T, Chuman S (1989) Armillarias isolated from the wild orchid, Galeola septentrionalis. In: Proceedings of the 7th International Conference on Root and Butt Rots 364–370Google Scholar
  30. Tremblay RL, Ackerman JD, Zimmerman JK, Calvo RN (2005) Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification. Biol J Linn Soc 84:1–54CrossRefGoogle Scholar
  31. van Dam AR, Householder JE, Lubinsky P (2010) Vanilla bicolor Lindl. (Orchidaceae) from the Peruvian Amazon: auto-fertilization in Vanilla and notes on floral phenology. Genet Resour Crop Evol 57:473–480CrossRefGoogle Scholar
  32. Van Der Pijl L (1966) Pollination mechanisms in orchids. Reproductive Biology and Taxonomy of Vascular Plants, In: 9th Conference Report of the Botanical Society of the British Isles, pp 61–75Google Scholar
  33. Waterman RJ, Bidartondo MI (2008) Deception above, deception below: linking pollination and mycorrhizal biology of orchids. J Exp Bot 59:1085–1096PubMedCrossRefGoogle Scholar
  34. Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:54–68CrossRefGoogle Scholar
  35. Zhang D, Saunders RMK (2000) Reproductive biology of a mycoheterotrophic species, Burmannia wallichii (Burmanniaceae). Bot J Linn Soc 132:359–367CrossRefGoogle Scholar
  36. Zhou X, Lin H, Fan XL, Gao JY (2012) Autonomous self-pollination and insect visitation in a saprophytic orchid, Epipogium roseum (D.Don) Lindl. Aust J Bot 60:154–159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Graduate School of Human and Environmental StudiesKyoto UniversityKyotoJapan

Personalised recommendations