Plant Systematics and Evolution

, Volume 299, Issue 2, pp 447–458 | Cite as

Phylogenetic reconstruction of key traits in the evolution of ivies (Hedera L.)

  • Virginia Valcárcel
  • Pablo Vargas
Original Article


The Mediterranean harbours the highest number of Hedera (Araliaceae) species, lineages, ploidy levels, and trichome morphologies of any area where the genus occurs. Previous molecular and cytogenetic studies identified two main centres of diversity for Hedera (Araliaceae), the eastern and western parts of the Mediterranean region. An explicit analysis of key traits was performed to investigate geographical patterns and ancestral character states of ivy lineages. Interestingly, the greatest diversity of Hedera was found in the western Mediterranean, including the three species of Macaronesia (H. azorica in the Azores, H. maderensis in Madeira and H. canariensis in the Canary Islands). Phylogenetic and phylogeographical analyses of the nrITS and plastid trnT-L sequences revealed multiple connections between the Mediterranean region and Asia, and suggest recurrent colonization between these two areas. Reconstruction of three important characters long used to distinguish members of the genus (trichome types, ploidy levels, and geographical areas) suggests that a diploid species with scale-like trichomes from the Mediterranean basin was the most recent common ancestor of the extant species of Hedera.


Phylogeography Ancestral character state reconstruction Trichomes Ploidy level Mediterranean Asia 



The authors thank two anonymous reviewers, whose comments and suggestions greatly contributed improving this manuscript, E. Narbona for providing assistance with SIMMAP handling and helpful comments, Curators and technical staff of four herbaria (MAKINO, TAIPEI, TAIF, and TNM) for providing essential plant material, M. Escudero for his help with TNT handling, and M. Míguez and E. Cano for laboratory technical support.

Supplementary material

606_2012_734_MOESM1_ESM.docx (29 kb)
Online Resource 1: List of GenBank accession numbers of the samples used in the ITS phylogenetic reconstruction and the Araliaceae trnT-L sequences included in the complete matrix, ordered by date of publication (DOCX 29 kb)
606_2012_734_MOESM2_ESM.eps (319 kb)
Online Resource 2: Majority rule consensus tree obtained from the Bayesian inference analysis of the 59 trnT-L sequences of Araliaceae. Values above branches indicate posterior probabilities. Bootstrap values obtained for congruent clades in the Maximum Parsimony analysis are indicated below branches. Names in bold indicate new samples included in this study (EPS 318 kb)


  1. Ackerfield J (2001) Trichome morphology in Hedera (Araliaceae). Edinburgh J Bot 58:259–267CrossRefGoogle Scholar
  2. Ackerfield J, Wen J (2002) A morphometric analysis of Hedera L. (the ivy genus, Araliaceae). Adansonia, Sér. 3, 324:197–212Google Scholar
  3. Ackerfield J, Wen J (2003) Evolution of Hedera (the ivy genus, Araliaceae): insights from chloroplast DNA data. Int J Plant Sci 164:593–602CrossRefGoogle Scholar
  4. Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7:88PubMedCrossRefGoogle Scholar
  5. Bremer K, Friis EM, Bremer B (2004) Molecular phylogenetic dating of asterid flowering plants shows early cretaceous diversification. Syst Biol 53:496–506PubMedCrossRefGoogle Scholar
  6. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  7. Dilcher DL, Dolph GE (1970) Fossil leaves of Dendropanax from eocene sediments of southeastern North America. Am J Bot 57:153–160CrossRefGoogle Scholar
  8. Frodin DG, Govaerts R (2003) World check-list and bibliography of Araliaceae. The Royal Botanical Gardens, Kew, p 443Google Scholar
  9. Goloboff P, Farris J, Nixon K (2003) TNT tree analysis using new technologies. Website
  10. Green AF, Ramsey TS, Ramsey J (2011) Phylogeny and biogeography of Ivies (Hedera spp., Araliaceae), a polyploid complex of woody vines. Syst Bot 36:1114–1127CrossRefGoogle Scholar
  11. Grivet D, Petit RJ (2002) Phylogeography of the common ivy (Hedera sp.) in Europe: genetic differentiation through space and time. Mol Ecol 11:1351–1362PubMedCrossRefGoogle Scholar
  12. Huelsenbeck JP, Rannala B (2003) Detecting correlation between characters in a comparative analysis with uncertain phylogeny. Evolution 57:1237–1247PubMedGoogle Scholar
  13. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  14. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314PubMedCrossRefGoogle Scholar
  15. Jacobsen P (1954) Chromosome numbers in the genus Hedera L. Hereditas 40:252–254Google Scholar
  16. Knobloch E, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravyústredního ústavu geologickénho. Praha 47:1–219Google Scholar
  17. Lawrence GHM, Schulze AE (1942) The cultivated Hederas. Gentes Herbariorum 6:107–173Google Scholar
  18. Lewis PO (2002) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefGoogle Scholar
  19. Lowry PP II, Plunkett GM, Wen J (2001) Generic relationships in Araliaceae: looking into de crystal ball. S Afr J Bot 70:382–392Google Scholar
  20. Lum C, Maze J (1989) A multivariate analysis of the trichomes of Hedera L. Watsonia 17:409–418Google Scholar
  21. Mabberley DJ (1997) The plant-book. Cambridge University Press, CambridgeGoogle Scholar
  22. Mcallister HA (1982) New work on ivies. Int Dendrol Soc 1981:106–109Google Scholar
  23. Mcallister HA (1988) Canary and Algerian ivies. The Plantsman 10:27–29Google Scholar
  24. Mcallister HA, Rutherford A (1990) Hedera helix L. and H. hibernica (Kirchner) bean (Araliaceae) in the British Isles. Watsonia 18:7–15Google Scholar
  25. Meusel H, Jäger E, Weinert E (1965) Vergleichende Chorologie der Zentraleuropäischen Flora. Veb Gustav Fischer Verlag, JenaGoogle Scholar
  26. Mitchell A, Wen J (2005) Phylogeny of Brassaiopsis (Araliaceae) in Asia based on nuclear ITS and 5S-NTS DNA sequences. Syst Biol 30:872–886Google Scholar
  27. Müller J (1981) Fossil pollen records of extant angiosperms. Bot Rev 47:1–142CrossRefGoogle Scholar
  28. Plunkett GM, Wen J, Lowry PP II (2004) Infrafamilial classifications and characters in Araliaceae: insights from the phylogenetic analysis of nuclear (ITS) and plastid (trnL-trnF) sequence data. Plant Syst Evol 245:1–39CrossRefGoogle Scholar
  29. Pojarkova AI (1951) The Chinese species of ivy and their taxonomic and geographic connections. Natulae systematicae ex herbario botanici nomine V.L. Komarovii academiae scientiarum URSS XIV:224–264Google Scholar
  30. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  31. Rim KH (1994) Fossils of north Korea. Science and Technology Press, PyongyangGoogle Scholar
  32. Ronquist F (2004) Bayesian inference of character evolution. Trends Ecol Evol 19:475–481PubMedCrossRefGoogle Scholar
  33. Rutherford A (1984) The history of the Canary islands ivy and its relatives. Ivy Journal 10:13–18Google Scholar
  34. Rutherford A (1989) The ivies of Andalusia (Southern Spain). Ivy Journal 15:7–17Google Scholar
  35. Rutherford A, McAllister HA, Mill RR (1993) New ivies from the Mediterranean area and Macaronesia. The Plantsman 15:115–128Google Scholar
  36. Seemann B (1868) Revision of the natural order Hederaceae. L. Reeve and Co., LondonGoogle Scholar
  37. Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49:451–477CrossRefGoogle Scholar
  38. Swofford DL (1998) PAUP*, Phylogenetic analysis using parsimony (* and other methods). Version 4. Sunderland: Sinauer AssociatesGoogle Scholar
  39. Szafer W (1961) Miocene flora from stare Gliwice in upper Silesia. Institut Geologiczny Prace 33:1–205Google Scholar
  40. Taberlet P, Gielly L, Pautou G, Bouvet AJ (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  41. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  42. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  43. Tobler F (1912) Die Gattung Hedera. Gustav Fischer, JenaGoogle Scholar
  44. Valcárcel V (2008) Taxonomy, systematics and evolution of Hedera L. (Araliaceae). Ph.d. dissertation, Universidad Pablo de Olavide, Sevilla, Spain (in English but two sections, introduction and conclusions, in Spanish)Google Scholar
  45. Valcárcel V, Vargas P (2010) Quantitative morphology and species delimitation under the general lineage concept: optimization for Hedera (Araliaceae). Am J Bot 97:1555–1573PubMedCrossRefGoogle Scholar
  46. Valcárcel V, Fiz O, Vargas P (2003) Chloroplast and nuclear evidence for multiple origins of polyploids and diploids of Hedera (Araliaceae) in the Mediterranean basin. Mol Phylogen Evol 27:1–20CrossRefGoogle Scholar
  47. Vargas P, McAllister HA, Morton C, Jury SL, Wilkinson MJ (1999) Polyploid speciation in Hedera (Araliaceae): phylogenetic and biogeographic insights based on chromosome counts and ITS sequences. Plant Syst Evol 219:165–179CrossRefGoogle Scholar
  48. Wen J (2000) Internal transcribed spacer phylogeny of the Asian and eastern North American disjunct Aralia sect. Dimorphanthus (Araliaceae) and its biogeographic implications. Int Plant Sci 161:959–966CrossRefGoogle Scholar
  49. Wen J, Plunkett GM, Mitchell AD, Wagstaff SJ (2001) The evolution of Araliaceae: a phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst Bot 26:144–167Google Scholar
  50. Yi T, Lowry PP II, Plunkett GM, Wen J (2004) Chromosomal evolution in Araliaceae and close relatives. Taxon 53:987–1005CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Universidad Autónoma de MadridMadridSpain
  2. 2.Real Jardín Botánico, CSICMadridSpain

Personalised recommendations