Plant Systematics and Evolution

, Volume 299, Issue 2, pp 331–345 | Cite as

Genome size in Filago L. (Asteraceae, Gnaphalieae) and related genera: phylogenetic, evolutionary and ecological implications

  • Santiago Andrés-Sánchez
  • Eva M. Temsch
  • Enrique Rico
  • M. Montserrat Martínez-Ortega
Original Article

Abstract

Recent studies have proposed a monophyletic circumscription of Filago and a new subgeneric treatment for this genus. The aim of this study was to analyse the nuclear genome size in a phylogenetic framework in order to evaluate the systematic significance of this trait to provide insights into the dynamics of genome size evolution and to assess relationships among DNA content, specific life and ecological features within the study group. A holoploid genome size of 76 samples corresponding to 27 taxa was determined using flow cytometry, which represents the first estimates of genome size in Bombycilaena, Filago, Ifloga and Logfia. Chromosome counts were performed for six species. Parsimony and Bayesian analysis of ITS, ETS and rpl32-trnL intergenic spacer sequence data were used to construct molecular phylogenetic trees. The evolution of genome size was investigated troughout the Brownian motion model with the three scaling parameters λ, κ and δ. The mean 2C-value in the Filago group is relatively low (1.3644 ± 0.0079 pg) and homogeneous among species. A high degree of congruence was found between genome size distribution and the major phylogenetic lineages obtained. The generally accepted assumption that annual, ephemeral and autogamous species show low genome sizes was confirmed. Also the relatively high DNA contents found for a couple of species could be correlated with their highly specific ecological requirements. Phylogeny seems to represent the most important factor explaining the pattern of DNA amount variation in the Filago group. The DNA amount does not seem to be strongly influenced by selection.

Keywords

Asteraceae Filago Flow cytometry Genome size evolution Logfia Phylogeny 

Notes

Acknowledgments

We would like to express our deep gratitude to Prof. J. Greilhuber for generous help at the early stages of this work and for comments that have improved this manuscript. Many thanks to Dr. M. Galbany-Casals for her constant support, enthusiastic discussions and help with phylogenetic analyses. Also our acknowledgement goes to Dr. A.M. Escudero Lirio, who helped with the statistical analyses using R software, and Dr. F. Gallego and Dr. L. Delgado for advice regarding chromosome counts. Thanks are also due to our friend Dr. J. Peñas de Giles for his collaboration in the field work. This work was supported by the Spanish Ministerio de Ciencia e Innovación (www.micinn.es) through projects CGL2008-02982-C03-02/CLI, CGL2011-28613-C03-03 and CGL2009-07555. SAS was also supported by a research grant financed by MICINN.

Supplementary material

606_2012_724_MOESM1_ESM.eps (4.2 mb)
Supplementary material 1 (EPS 4,285 kb)

References

  1. Addinsoft (2009) XLSTAT. Addinsoft Inc. Paris, France. http://www.xlstat.com/ (Accessed 23 August 2011)
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6):716–723CrossRefGoogle Scholar
  3. Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot (Oxford) 94:897–911CrossRefGoogle Scholar
  4. Anderberg AA (1991) Taxonomy and phylogeny of the tribe Gnaphalieae (Asteraceae). Opera Bot 104:5–195Google Scholar
  5. Andrés-Sánchez S, Galbany-Casals M, Rico E, Martínez-Ortega MM (2011) A nomenclatural treatment for Logfia Cass. and Filago L. (Asteraceae) as newly circumscribed: typification of several names. Taxon 60:572–576Google Scholar
  6. Apg III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Lin Soc 161:105–121CrossRefGoogle Scholar
  7. Baack EJ, Whitney KD, Rieseberg LH (2005) Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol 167:623–630PubMedCrossRefGoogle Scholar
  8. Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Pl Syst Evol 257:95–117CrossRefGoogle Scholar
  9. Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Pl Cell Environ 26:571–584CrossRefGoogle Scholar
  10. Bennett MD (1971) The duration of meiosis. Proc R Soc B 178:277–299CrossRefGoogle Scholar
  11. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc B 181:109–135CrossRefGoogle Scholar
  12. Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environm Exp Bot 16:93–108CrossRefGoogle Scholar
  13. Bennett MD, Leitch IJ (2010a) Angiosperm DNA C-values Database (release 7.0, Dec. 2010). http://www.kew.org/cvalues/ (Accessed 22 September 2011)
  14. Bennett MD, Leitch IJ (2010b) Nuclear DNA amounts in Angiosperms: progress, problems and prospects. Ann Bot (Oxford) 95:45–90CrossRefGoogle Scholar
  15. Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36PubMedCrossRefGoogle Scholar
  16. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Pl Cell 9:1509–1514Google Scholar
  17. Bennetzen JL, Ma JX, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot (Oxford) 95:127–132CrossRefGoogle Scholar
  18. Bergh NG, Trisos CH, Verboom GA (2011) Phylogeny of the “Ifloga clade” (Asteraceae, Gnaphalieae), a lineage occurring disjointly in the Northern and Southern Hemisphere, and inclusion of Trichogyne in synonymy with Ifloga. Taxon 60:1065–1075Google Scholar
  19. Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Ann Bot (Oxford) 86:565–573CrossRefGoogle Scholar
  20. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molec Biol Evol 17:540–552PubMedCrossRefGoogle Scholar
  21. Cerbah M, Coulaud J, Brown SC, Siljak-Yakovlev S (1999) Evolutionary DNA variation in the genus Hypochaeris. Heredity 82:261–266PubMedCrossRefGoogle Scholar
  22. Chooi WY (1971) Variation in nuclear DNA content in the genus Vicia. Genetics 68:195–211PubMedGoogle Scholar
  23. Chrtek J, Zahradnicek J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot (Oxford) 104:161–178CrossRefGoogle Scholar
  24. Comeron JM (2001) What controls the length of noncoding DNA? Curr Opin Genet Dev 11:652–659PubMedCrossRefGoogle Scholar
  25. Dalgaard V (1986) Chromosome studies in flowering plants from Macaronesia. Anales Jard Bot Madrid 43:83–111Google Scholar
  26. Devos KM, Brown JKM, Benetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079PubMedCrossRefGoogle Scholar
  27. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Lysak MA, Nardy L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann. Bot. (Oxford) 82 (Supplement A): 17–26Google Scholar
  28. Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–65Google Scholar
  29. Dušková E, Kolář F, Skelenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148Google Scholar
  30. Escudero M, Hipp AL, Luceño M (2010) Karyotype stability and predictors of chromosome Lumber variation in sedges: a study in Carex section Sppirostachyae (Cyperaceae). Molec Phylogen Evol 57:353–363CrossRefGoogle Scholar
  31. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  32. Galbany-Casals M, Andrés-Sánchez S, García-Jacas N, Susanna A, Rico E, Martínez-Ortega MM (2010) How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae) with special focus on the genus Filago. Taxon 59:1671–1689Google Scholar
  33. García S, Sanz M, Garnatje T, Kreitschitz A, McArthur ED, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014PubMedCrossRefGoogle Scholar
  34. García S, Inceer H, Garnatje T, Vallès J (2005) Genome size variation in some representatives of the genus Tripleurospermum. Biol Pl 49:381–387CrossRefGoogle Scholar
  35. Garnatje T, García S, Canela MÁ (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Pl Syst Evol 264:117–134CrossRefGoogle Scholar
  36. Goloboff PA, Farris JS, Nixon K (2003) TNT: Tree Analysis Using New Technology Version 1.1. Program and documentation, available from the authors. http://www.zmuc.dk/public/phylogeny/ (Accessed 11 October 2012)
  37. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev (London) 76:65–101Google Scholar
  38. Gregory TR (2003) Insertion-deletion biases and the evolution of genome size. Gene 324:15–34CrossRefGoogle Scholar
  39. Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after non additive fixations as a result of meristematic self-tanning with vacuole contents. Canad J Genet Cytol 28:409–415Google Scholar
  40. Greilhuber J (1988) “Self-tanning”—a new an important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Pl Syst Evol 158:87–96CrossRefGoogle Scholar
  41. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot (Oxford) 82 (Supplement A): 27–35Google Scholar
  42. Greilhuber J (2005) Intraspecific variation in genome size in Angiosperms: identifying its existence. Ann Bot (Oxford) 95:91–98CrossRefGoogle Scholar
  43. Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551CrossRefGoogle Scholar
  44. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “Genome Size” and “C-Value” to describe nuclear DNA contents. Ann Bot (Oxford) 95:255–260CrossRefGoogle Scholar
  45. Greilhuber J, Temsch EM, Loureiro CM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 41–65Google Scholar
  46. Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153CrossRefGoogle Scholar
  47. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  48. Hanson L, McMahon KA, Johnson MAT, Bennett MD (2001) First nuclear DNA C-values for another 25 angiosperm families. Ann Bot (Oxford) 88:851–858CrossRefGoogle Scholar
  49. Harmon L, Weir J, Brock C, Glor R, Challenger W, Hunt G (2009) Package geiger. Analysis of evolutionary diversification. http://cran.r-project.org/web/packages/geiger/geiger.pdf (Accessed 30 May 2012)
  50. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution. Oxford University Press, OxfordGoogle Scholar
  51. Huelsenbeck P, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  52. Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is liked to phylogeny, life form, ecology, and speciation rates. Molec Biol Evol 21:860–869PubMedCrossRefGoogle Scholar
  53. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  54. Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95:2005–2010PubMedCrossRefGoogle Scholar
  55. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5:66–76CrossRefGoogle Scholar
  56. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190CrossRefGoogle Scholar
  57. La Cour LF (1954) Smear and squash techniques in plant cytology. Laboratory practique 3:326–330Google Scholar
  58. Labani RM, Elkington TT (1987) Nuclear DNA variation in the genus Allium L. (Liliaceae). Heredity 59:119–128CrossRefGoogle Scholar
  59. Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 153–176Google Scholar
  60. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot (Oxford) 82:85–94CrossRefGoogle Scholar
  61. Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across lands plants (Embryophyta). Ann Bot (Oxford) 95:207–217CrossRefGoogle Scholar
  62. Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs of genome size evolution in Brassicaceae. Molec Biol Evol 26:85–98PubMedCrossRefGoogle Scholar
  63. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869PubMedCrossRefGoogle Scholar
  64. MacGillivray CW, Grime JP (1995) Genome size predicts frost-resistance in British herbaceous plants-implications for rates of vegetation response to global warming. Funct Ecol 9:320–325CrossRefGoogle Scholar
  65. Maddison DR (1991) The discovery and importance of multiple islands of most-parsimonious trees. Syst Zool 40:315–328CrossRefGoogle Scholar
  66. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.73. http://mesquiteproject.org (Accessed 9 September 2011)
  67. Malallah GA, Masood M, Al-Dosari M (2001) Chromosome numbers of the Kuwaiti flora, III. Willdenowia 31:411–418Google Scholar
  68. Marhold K, Kudoh H, Pak JH, Watanabe K, Spaniel S, Lihová J (2010) Cytotype diversity and genome size variation in eastern Asian polyploidy Cardamine (Brassicaceae) species. Ann Bot (Oxford) 105:249–264CrossRefGoogle Scholar
  69. Mishiba K-I, Ando T, Mii M, Watanabe H, Kokubun H, Hashimoto G, Marchesi E (2000) Nuclear DNA content as an index character discriminating taxa in the genus Petunia sensu Jussieu (Solanaceae). Ann Bot (Oxford) 85:665–673CrossRefGoogle Scholar
  70. Morgan MT (2001) Transposable element number in mixed mating populations. Genet Res 77:261–275PubMedCrossRefGoogle Scholar
  71. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot (Oxford) 95:119–125CrossRefGoogle Scholar
  72. Ohri D (1998) Genome size variation and plant systematics. Ann Bot (Oxford) 82 (Supplement A): 75–83Google Scholar
  73. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110PubMedCrossRefGoogle Scholar
  74. Pagel M (1997) Inferring evolutionary processes from phylogenies. Zoologica Scripta 26:331–348CrossRefGoogle Scholar
  75. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884PubMedCrossRefGoogle Scholar
  76. Pagel M, Meade A (2007) BayesTraits. Computer progam and documentation. http://www.evolution.rdg.ac.uk/BayesTraits.html (Accessed 21 September 2011)
  77. Petrov DA (2001) Evolution of genome size: new approaches to an old problem. Trends Genetics 17:23–28CrossRefGoogle Scholar
  78. Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91PubMedCrossRefGoogle Scholar
  79. Posada D (2008) jModelTest: phylogenetic model averaging. Molec Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  80. Randall R (2007) Global compendium of weeds. http://www.hear.org/gcw/ (Accessed 22 February 2011)
  81. Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79:470–474CrossRefGoogle Scholar
  82. Reeves G, Francis D, Stuart Davies M, Rogers HJ, Hodkinson TR (1998) Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot (Oxford) 82 (Supplement A): 99–105Google Scholar
  83. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  84. Salabert de Campos JM, Sousa SM, Souza Silva P, Pinheiro LC, Sampaio F, Viccini F (2011) Chromosome numbers and DNA C-values in the genus Lippia (Verbenaceae). Pl Syst Evol 291:133–140CrossRefGoogle Scholar
  85. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nature Genetics 20:43–45PubMedCrossRefGoogle Scholar
  86. Smissen RD, Galbany-Casals M, Breitwieser I (2011) Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60:649–662Google Scholar
  87. Suda J, Kyncl T, Freiová R (2003) Nuclear DNA amounts in Macaronesian angiosperms. Ann Bot (Oxford) 92:153–164CrossRefGoogle Scholar
  88. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot (Oxford) 100:1323–1335CrossRefGoogle Scholar
  89. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10. Sinauer Associates, SunderlandGoogle Scholar
  90. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577PubMedCrossRefGoogle Scholar
  91. Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830PubMedGoogle Scholar
  92. Temsch EM, Greilhuber J, Krisai R (2010) Genome size in liverworts. Preslia 82:63–80Google Scholar
  93. Thomas CA (1971) The genetic organization of chromosomes. Annual Rev Genet 5:237–256CrossRefGoogle Scholar
  94. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  95. Torrell M, Vallès J (2001) Genome size in 21 Artemisia L. Species (Asteraceae, Anthemideae): Systematic, evolutionary, and ecological implications. Genome 44:231–238PubMedGoogle Scholar
  96. Tukey JW (1953) Some selected quick and easy methods of statistical analysis. Trans New York Acad Sci 16(2):88–97CrossRefGoogle Scholar
  97. Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genetics 19:609–614CrossRefGoogle Scholar
  98. Wagenitz G (1965) Zur Systematik und Nomenklatur einiger Arten von Filago L. emend. Gaertn. subgen. Filago (“F. germanica” Gruppe). Willdenowia 4:37–59Google Scholar
  99. Walker DJ, Moñino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C. H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environm Exp Bot 55:258–265CrossRefGoogle Scholar
  100. Watanabe K (2010) Index to Chromosome numbers in Asteraceae. http://www.lib.kobe-u.ac.jp/infolib/meta_pub/G0000003asteraceae_e (Accessed 22 February 2011)
  101. Weiss-Schneeweiss H, Greilhuber J, Schneeweis GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Amer J Bot 93:148–156CrossRefGoogle Scholar
  102. Wendel JF, Cronn RC, Johnston S, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47PubMedCrossRefGoogle Scholar
  103. Záveský L, Jarolímova V, Štěpánek J (2005) Nuclear DNA content variation within the genus Taraxacum (Asteraceae). Folia Geobot 40:91–104CrossRefGoogle Scholar
  104. Zonneveld BJM (2001) Nuclear DNA contents of all species of Helleborus (Ranunculaceae) discriminate between species and sectional divisions. Pl Syst Evol 229:125–130CrossRefGoogle Scholar
  105. Zonneveld BJM, Duncan GD (2010) Genome sizes of Eucomis L’Hér. (Hyacinthaceae) and a description of the new species Eucomis grimshawii G.D. Duncan & Zonneveld. Pl. Syst. Evol. 284:99–109CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Santiago Andrés-Sánchez
    • 1
  • Eva M. Temsch
    • 2
  • Enrique Rico
    • 1
  • M. Montserrat Martínez-Ortega
    • 1
  1. 1.Departamento de Botánica, Facultad de BiologíaUniversidad de SalamancaSalamancaSpain
  2. 2.Department of Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria

Personalised recommendations