Plant Systematics and Evolution

, Volume 298, Issue 9, pp 1743–1753 | Cite as

A new insight into Serjania Mill. (Sapindaceae, Paullinieae) infrageneric classification: a cytogenetic approach

  • J. P. CoulleriEmail author
  • M. Dematteis
  • M. S. Ferrucci
Original Article


Serjania (Sapindaceae, Paullinieae) comprises about 230 species, and currently two infrageneric classifications have been proposed but both are difficult to apply. This work tested which infrageneric classification fitted better in relation to cytogenetic traits added to the main morphological features used by the authors of the subgenus arrangements to gain an insight into the evolutionary karyotype relationships. In order to test the relationship between karyotypes and the systematics of this genus, the karyotypes of five species of Serjania belonging to five different sections (sensu Radlkofer) were described. Known karyological information on 26 species was used to complement the results. With these data, a cluster analysis was set up to test which infrageneric classification fitted better. In addition, a principal component analysis (PCA) was performed to examine the relevance of the traits in the subgenus classification. All the karyotypes analyzed (including new as well as previous records) had 2n = 24 chromosomes, and the karyotypes were asymmetrical: submetacentric and metacentric chromosomes were common, whereas telocentric chromosomes were rare. The PCA revealed seven principal components, the first two explained 52 % of the total variation, and the last ones were related to all the karyotypic features studied. The phenogram obtained reflected a scarce fitting into both infrageneric classifications, with only 3 sections of the 12 proposed by Radlkofer and two of the six sections proposed by Acevedo-Rodríguez being represented. Finally, regarding karyotype evolution, the constancy of chromosome number and the variation in the length of the complement suggest that structural chromosome changes would have played a leading role.


Cluster analysis Karyotypes Sapindaceae Somatic chromosomes Cytotaxonomy 



This research was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and the Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.


  1. Acevedo-Rodríguez P (1993) Systematics of Serjania (Sapindaceae). Part I: a revision of Serjania Sect. Platycoccus. Mem New York Bot Gard 67:1–93Google Scholar
  2. Buerki S, Forest F, Acevedo-Rodríguez P, Callmander MW et al (2009) Plastid and nuclear DNA markers reveal intricate relationships at subfamilial and tribal levels in the soapberry family (Sapindaceae). Mol Phylogenet Evol 51:238–258PubMedCrossRefGoogle Scholar
  3. Buerki S, Lowry PP II, Alvarez N, Razafimandimbison SG, Küpfer P, Callmander MW (2010) Phylogeny and circumscription of Sapindaceae revisited: molecular sequence data, morphology and biogeography support recognition of a new family Xanthoceraceae. Plant Ecol Evol 143:148–161CrossRefGoogle Scholar
  4. Chiarini F, Bernardello G (2006) Karyotype Studies in South American Species of Solanum subgen. Leptostemonum (Solanaceae). Plant Biol 8:486–493PubMedCrossRefGoogle Scholar
  5. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2008) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
  6. Fernández A (1973) El ácido láctico como fijador cromosómico. Bol Soc Argent Bot 15:287–290Google Scholar
  7. Ferrucci MS (1981) Recuentos cromosómicos en Sapindáceas. Bonplandia 5:73–81Google Scholar
  8. Ferrucci MS (1985) Recuentos cromosómicos en Allophyllus y Serjania (Sapindaceae). Bol Soc Argent Bot 24:200–202Google Scholar
  9. Ferrucci MS (2000) Cytotaxonomy of Sapindaceae with special reference to the tribe Paullinieae. Genet Mol Biol 23:941–946CrossRefGoogle Scholar
  10. Ferrucci MS, Acevedo-Rodríguez P (2005) Three new species of Serjania (Sapindaceae) from South America. Syst Bot 30:153–162CrossRefGoogle Scholar
  11. Ferrucci MS, Solís Neffa VG (1997) Citotaxonomia de Sapindaceae Sudamericanas. Bol Soc Argent Bot 33:77–83Google Scholar
  12. Ferrucci MS, Somner GV (2010) Serjania glandulosa (Sapindaceae: Paullinieae), una nueva especie de Serra do Cabral, Minas Gerais, Brazil. Brittonia 62:192–197CrossRefGoogle Scholar
  13. Guervin C (1961) Cotribution á létude cytotaxinomique des Sapindacées et caryologique des Mélianthacées et des Didiéreacées. Rev Cytol Biol Veg 23:49–87Google Scholar
  14. Harrington MG, Edwards KJ, Johnson SA, Chase MW, Gadek PA (2005) Phylogenetic inference in Sapindaceae sensu lato using plastid matK and rbcL DNA sequences. Syst Bot 30:366–382CrossRefGoogle Scholar
  15. Hemmer W, Morawetz W (1990) Karyological differentiation in Sapindaceae with special reference to Serjania and Cardiospermum. Bot Acta 103:372–383Google Scholar
  16. Kenton AY, Rudall PJ, Johnson AR (1986) Genome size variation in Sisyrinchium L. (Iridaceae) and its relationship to phenotype and habitat. Bot Gaz 147:342–354CrossRefGoogle Scholar
  17. King M (1970) Species evolution: the role of chromosome change. Cambridge University Press, CambridgeGoogle Scholar
  18. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  19. Lima de Faría A (1980) Classification of genes, rearrangements and chromosomes according to the field. Hereditas 93:1–46PubMedCrossRefGoogle Scholar
  20. Nogueira Zampieri C, Ruas PM, Ruas CF, Ferrucci MS (1995) Karyotypic study of some species of Serjania and Urvillea (Sapindaceae, Tribe Paullinieae). Am J Bot 82:646–654CrossRefGoogle Scholar
  21. Radlkofer L (1874) Conspectus sectionum specierumque generis Serjaniae. F. Straub, MünchenGoogle Scholar
  22. Radlkofer L (1875) Monographie der Sapindaceen-GattungSerjania. Verlag der Königl. Bayer Akademie, MünchenGoogle Scholar
  23. Radlkofer L (1931) Sapindaceae. In: Engler A (ed) Das Planzenreich IV. vol 165 (Heft 98a). H. R. Engelmann (J. Cramer), Weinheim, pp 19–219Google Scholar
  24. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  25. Shaw DD, Wilkinson P, Coates DJ (1983) Increased chromosomal mutation rate after hybridization between two subspecies of grass-hoppers. Science 220:1165–1167PubMedCrossRefGoogle Scholar
  26. Solís Neffa VG, Ferrucci MS (1997) Cariotipos de especies sudamericanas de Serjania (Sapindaceae, Paullinieae). Bonplandia 9:265–276Google Scholar
  27. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold Publisher Ltd, London, pp 125–189Google Scholar
  28. Urdampilleta JD (2005) Estudo citogenetico em Paullinieae (Sapindaceae). Mst thesis. Londrina, RGS, BrazilGoogle Scholar
  29. Urdampilleta JD (2009) Estudo citotaxônomico em espécies de Paullinieae (Sapindaceae). PhD thesis. Campinas, SP, BrazilGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. P. Coulleri
    • 1
    Email author
  • M. Dematteis
    • 1
  • M. S. Ferrucci
    • 1
  1. 1.Instituto de Botánica del Nordeste (UNNE-CONICET)CorrientesArgentina

Personalised recommendations