Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 9, pp 1711–1721 | Cite as

A comparative anatomical study in cassava diploid and tetraploid hybrids

  • D. Graciano-Ribeiro
  • N. M. A. NassarEmail author
Original Article

Abstract

Cassava, Manihot esculenta Crantz, is the most important crop for poor people in the tropics and subtropics. It is a woody plant scarcely studied from the anatomical viewpoint. Information on its anatomy is needed for use in plant breeding programs. An interspecific hybrid between cassava and M. oligantha Pax was obtained and artificially polyploidized by the second author. Hand cross sections were applied to the stem, colored by safranin and alcian blue, and mounted in synthetic resin. Tetraploid type showed a larger portion of medulla and absence of a growth ring. Vascular tissues in tetraploid were larger too. Both of these types had similar structure of vessel elements and articulated laticifers. Distribution of different tissues in the two types refers to more resistance to drought in the tetraploid type than in the diploid one.

Keywords

Manihot Stem anatomy Polyploidy Laticifers 

Notes

Acknowledgments

This work is being carried out with the help of the Brazilian National Council for Scientific Research (CNPq) and the Brazilian Coordination for Qualifying Graduate Students (CAPES). The above-mentioned living collection was established at the Universidade de Brasilia in the 1970s with the help of the Canadian International Center for Research Development (IDRC), to whom we are grateful.

References

  1. Akin DE (1989) Histological and physical factors affecting digestibility of forages. Agronomic J 81:17–25CrossRefGoogle Scholar
  2. Alves de Brito CJFA, Rodella RA, Deschamps FC, Alquini Y (1999) Anatomia quantitativa e degradação in vitro de cultivares de capim-elefante (Pennisetum purpureum Schum) (Poaceae). Arquivos de Biologia e Tecnologia 40:661–671Google Scholar
  3. Bailey IW (1944) The development of vessels in angiosperms and its significance in morphological research. Am J Bot 31:421–428CrossRefGoogle Scholar
  4. Brito CJFA, Rodella RA (2002) Caracterização morfoanatômica da folha e do caule de Brachiaria brizantha (Hoschst. Ex A. Rich.) Stapf e B. humidicola (Rendle) Schweick (Poaceae). Revista Brasileira de Botânica, 25(2):221–228Google Scholar
  5. Cavalier-Smith T (1985) Cell volume and the evolution of eukaryotic genome size. In: Chichester (ed) Cavalier-Smith, The evolution of genome size. UK, Wiley and Sons, pp 105–184Google Scholar
  6. Dehgan B (1982) Comparative anatomy of the petiole and infrageneric relationships in Jatropha (Euphorbiaceae). Am J Bot 69(8):1283–1295CrossRefGoogle Scholar
  7. Esau K (1965) Plant anatomy. Wiley, New YorkGoogle Scholar
  8. FAO (2006) Production yearbook. FAO, RomeGoogle Scholar
  9. Franceschi VR, Horner HT (1980) Calcium oxalate in plants. Bot Rev 46:361–427CrossRefGoogle Scholar
  10. Franklin GL (1945) Preparation of thin section of the synthetic resins and wood-resin composities, and a new macerating method for wood. Nature 155:51CrossRefGoogle Scholar
  11. Graciano-Ribeiro D, Nassar NMA, Hashimoto DYC, Miranda SF, Nogueira LC (2008) Anatomy of polyploid cassava and its interspecific hybrids. Geneconserve 7(27):620–635Google Scholar
  12. Graciano-Ribeiro D, Hashimoto DYC, Nogueira LC, Deodoro P, Miranda SF, Nassar NMA (2009) Internal phloem in an interspecific hybrid of cassava, an indicator of breeding value for drought resistance. Genetic Mol Res 8(3):1139–1146CrossRefGoogle Scholar
  13. Hartmann HT, Kester DE, Davies FT, Geneve RL (1997) Plant propagation: principles and practices. Englewood Clips/Prentice Hall, New YorkGoogle Scholar
  14. Higley WK (1880) On the microscopic crystals contained in plants. Am Nat 14(10):720–725CrossRefGoogle Scholar
  15. Jellings AJ, Leech RM (1984) Anatomical variation in first leaves of nine Triticum genotypes, and its relationship to photosynthetic capacity. New Phytol 96(3):371–382CrossRefGoogle Scholar
  16. Johansen DA (1940) Plant microtechnique. USA, New YorkGoogle Scholar
  17. Kaminski A, Austin RB, Ford MA, Morgan CL (1990) Flag leaf anatomy of Triticum and Aegilopsis species in relation to photosynthetic rate. Ann Bot 66:359–365Google Scholar
  18. Kraus JE, Arduin M (1997) Manual básico de métodos em morfologia vegetal. EDUR, Rio de Janeiro, SeropedicaGoogle Scholar
  19. Luque R, Sousa HC, Kraus JE (1996) Métodos de coloração de Roeser (1972)—modificado—e Kropp (1972) visando a substituição do azul de astra por azul de alciao 8GS ou 8 GX. Acta Bot Brasilica 10(2):199–212Google Scholar
  20. Mahlberg PG (1975) Evolution of the laticifer in Euphorbia as interpreted from starch grain morphology. Am J Bot 62:577–583CrossRefGoogle Scholar
  21. Mahlberg PG, Davis DG, Galitz DS, Manners GD (1987) Laticifers and the classification of Euphorbia: the chemotaxonomy of Euphorbia esula L. Bot J Linn Soc 94:165–180CrossRefGoogle Scholar
  22. Mendonça MS (1983) Estudo de plantas laticíferas. I. Aspectos anatômicos e distribuição de vasos laticíferos em Manihot caerulescens Pohl. Acta Amazonica 13:501–517Google Scholar
  23. Mendonça MS (1992) Estudo de plantas laticíferas. II. Aspectos anatômicos e distribuição de vasos laticíferos em Manihot glaziovii Muller Arg. Acta Amazonica 22(3):309–321Google Scholar
  24. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127CrossRefGoogle Scholar
  25. Nassar NMA (1979) Attempts to hybridize wild manihot species with cassava. Econ Bot 34(1):13–15CrossRefGoogle Scholar
  26. Nassar NMA (1989) Broadening the genetic base of cassava, manihot esculenta crantz by interspecific hybridization. Can J Plant Sci 69(2):1071–1073CrossRefGoogle Scholar
  27. Nassar NMA (1995) Cytogenetic behaviour of the interspecific hybrid of manihot neusana nassar and cassava M.Esculenta crantz, and its backcross progeny. Can J Plant Sci 75:675–678CrossRefGoogle Scholar
  28. Nassar NMA (1997) Prospects of polyploidizing cassava by unreduced microspores. Plant Breed 116:195–197CrossRefGoogle Scholar
  29. Nassar NMA (2000) Cytogenetics and evolution of Cassava (Manihot esculenta Crantz). Genet Mol Biol 23(4):1003–1014CrossRefGoogle Scholar
  30. Nassar NMA (2002) Keeping options alive and threat of extinction: a survey of wild cassava survival in its natural habitats. Geneconserve 1(1):01–06Google Scholar
  31. Nassar NMA (2004) Polyploidy, chimera and fertility of interspecific cassava (Manihot esculenta Crantz) hybrids. Indian J Genet Plant Breed 64:132–134Google Scholar
  32. Nassar NMA (2005) Cassava: some considerations on its ecology and improvement. J Food Agric Environ 2:167–173Google Scholar
  33. Nassar NMA (2007) Wild and indigenous cassava diversity: an untapped genetic resources. Genet Resour Crop Evol 54:01–10CrossRefGoogle Scholar
  34. Nassar NMA, Dorea JGN (1982) Protein content of cassava cultivars and its hybrid with wild manihot species. Turrialba 32(4):429–432Google Scholar
  35. Nassar NMA, Souza MV (2007) Amino acid profile in cassava and its interspecific hybrid. Genet Mol Res 6:192–197Google Scholar
  36. Nassar NMA, Hashimoto DYC, Fernandes SDC (2008a) Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res 7(1):16–28PubMedCrossRefGoogle Scholar
  37. Nassar NMA, Graciano-Ribeiro D, Fernandes SDC, Araujo PC (2008b) Anatomical alterations due to polyploidy in cassava, Manihot esculenta Crantz. Genet Mol Res 7(2):276–283PubMedCrossRefGoogle Scholar
  38. Noris DM, Kogan M (1980) Biochemical and morphological bases of resistance. In: Maxwell FG, Jennings PR (eds) Breeding plants resistance to insects. Publication, Wiley Interscience, pp 23–61Google Scholar
  39. Paiva JGA, Fank-de-Carvalho SM, Magalhaes MP, Graciano-Ribeiro D (2006) Verniz vitral 500®: uma alternativa de meio de montagem economicamente viável. Acta Bot Brasilica 20:257–264Google Scholar
  40. Philip T, Govindaiah C, Sengup AK, Naik VN (1991) Anatomical nature of resistance in mulberry genotypes against Cerotelium fici causing leaf rust. Indian Phytopath 44(2):249–251Google Scholar
  41. Pyke KA, Jellings AJ, Leech RM (1990) Variation in mesophyll cell number and size in wheat leaves. Ann Bot 65:679–683Google Scholar
  42. Rogers DJ, Appan SG (1973) Flora Neotropica. Manihot-Manihotoides. Monograph n. 9, Hafner Press, New YorkGoogle Scholar
  43. Rudall PJ (1987) Laticifers in Euphorbiaceae—A conspectus. Bot J Linn Soc 94:143–163CrossRefGoogle Scholar
  44. Rudall PJ (1994) Laticifers in Crotonoideae (Euphorbiaceae): homology and Evolution. Ann Mo Bot Gard 81(2):270–282CrossRefGoogle Scholar
  45. Silva-Lima LM, Alquini Y, Brito CJF, Deschamps FC (2001a) Degradação ruminal dos tecidos vegetais e composição bromatológica de cultivares de Axonopus scoparius (Flüegge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm. Ciência Rural, 31(3):509–515Google Scholar
  46. Silva-Lima LM, Alquini Y, Brito CJF, Deschamps FC (2001b) Área de tecidos de folhas e caules de Axonopus scoparius (Flüegge) Kuhlm. e Axonopus fissifolius (Raddi) Kuhlm. Ciência Rural, 31(3):425–430Google Scholar
  47. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, LondonGoogle Scholar
  48. Sugiyama S (2005) Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Ann Bot 96:931–938PubMedCrossRefGoogle Scholar
  49. Vannucci AL (1985) Anatomia foliar comparada de duas species nativas de Manihot Mill (Euphorbiaceae). In: Anais do XXXVI Congresso Brasileiro de Botanica, Curitiba, 1985, pp 819–836Google Scholar
  50. Webster G (1975) Conspectus of a new classification of the Euphorbiaceae. Taxon 24:593–601CrossRefGoogle Scholar
  51. Webster G (1994) Synopsis of the genera and suprageneric taxa of Euphorbiaceae. Ann Mo Bot Gard 81:33–144CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departamento de BotânicaUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Departamento de Genética E MorfologiaUniversidade de BrasíliaBrasíliaBrazil

Personalised recommendations