Plant Systematics and Evolution

, Volume 298, Issue 8, pp 1503–1514 | Cite as

Molecular cytogenetic studies of the “Xanthocephalum group” (Asteraceae)

  • Natalia Cecilia Moreno
  • L. Stiefkens
  • M. L. Las Peñas
  • A. Bartoli
  • R. Tortosa
  • G. Bernardello
Original Article


Fourteen North American members of the “Xanthocephalum group” were studied by classical and molecular cytogenetics. Location and number of rDNA sites were determined by FISH. For the 5S rDNA, a probe was obtained from Prionopsis ciliata. Most species were diploid (2n = 12), although Isocoma menziesii, Grindelia hirsutula, G. robusta, both varieties of G. stricta, and one population of G. camporum were tetraploid (2n = 24). Diploid Grindelia and Prionopsis ciliata were 5m + 1sm, tetraploids 10m + 2sm, except G. hirsutula (8m + 4sm), and Isocoma and Olivaea 6m + 2sm and 3m + 3sm, respectively. Most species had satellites on the short arms of m pairs: two in tetraploids and P. ciliata and one in diploids. Satellites were associated with two CMA+/DAPI bands in diploid species and four bands in tetraploids and in P. ciliata. rDNA loci (two in diploids to four in tetraploids) may be indicative of ploidy level. Grindelia tetraploids could have originated recently by autopolyploidy. Chromosome duplication was followed by modifications in the genome structure, resulting in higher heterochromatin amounts not associated with NORs. There is only one 5S site per basic genome in para or pericentromeric regions. Although not always large, chromosome variation has accompanied the evolutionary divergence of the taxa studied.


18-5.8-26S and 5S rDNA Asteraceae Fluorescent banding Karyotypes North America Xanthocephalum group” 



Dr Carolyn Ferguson (KSU Herbarium), Biol. Abigail Moore (JEPS Herbarium), and Dr José Luis Villaseñor (Instituto de Biología, UNAM) kindly send the samples. Grants from “Consejo Nacional de Investigaciones Científicas y Técnicas” (CONICET, Argentina), FONCYT, and “Universidad Nacional de Córdoba” (SECyT, Argentina) are acknowledged.


  1. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141PubMedCrossRefGoogle Scholar
  2. Adams SP, Leitch IJ, Bennet MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583PubMedCrossRefGoogle Scholar
  3. Baeza C, Schrader O (2005) Comparative karyotype analysis in Haplopappus Cass. and Grindelia Willd. (Asteraceae) by double FISH with rRNA specific genes. Plant Syst Evol 251:161–172CrossRefGoogle Scholar
  4. Bartoli A, Tortosa R (1998) Estudios cromosómicos en especies sudamericanas de Grindelia (Astereae, Asteraceae). Kurtziana 26:165–171Google Scholar
  5. Battaglia E (1955) Chromosome morphology and terminology. Caryologia 8:179–187Google Scholar
  6. Besendorfer V, Samardzija M, Zoldos V, Solic ME, Papes D (2002) Chromosomal organization of ribosomal genes and NOR-associated heterochromatin, and NOR activity in some populations of Allium commutatum Guss. (Alliaceae). Bot J Linn Soc 139:99–108CrossRefGoogle Scholar
  7. Cai Q, Zhang D, Liu Z-L, Wang X-R (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722PubMedCrossRefGoogle Scholar
  8. Carr GD, King RM, Powell AM, Robinson HE (1999) Chromosome numbers in Compositae. XVIII. Am J Bot 86:1003–1013PubMedCrossRefGoogle Scholar
  9. Cerbah M, Coulaud J, Godelle B, Siljak-Yakovlev S (1995) Genome size, fluorochrome banding, and karyotype evolution in some Hypochaeris species. Genome 38:689–695PubMedCrossRefGoogle Scholar
  10. Cheng Z, Presting GG, Buell CR, Wing RA, Jiang J (2001) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757PubMedGoogle Scholar
  11. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252PubMedCrossRefGoogle Scholar
  12. Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846PubMedCrossRefGoogle Scholar
  13. Coşkuncelebi K, Hayirlioğlu-Ayaz S (2006) Notes on chromosome numbers and karyotypes of five species in Hieracium L. s.str. (Asteraceae) from Turkey. Caryologia 59:19–24Google Scholar
  14. D’Amato G (2000) Speckled Fluorescent Banding Pattern in Scorzonera (Asteraceae). Hereditas 132:265–267PubMedCrossRefGoogle Scholar
  15. De Jong DC, Beaman JH (1963) The genus Olivaea (Compositae, Astereae). Brittonia 15:86–92CrossRefGoogle Scholar
  16. Deumling B, Greilhuber J (1982) Characterization of heterochromatin in different species of the Scilla siberica group (Liliaceae) by in situ hybridization of satellite DNAs and fluorochrome banding. Chromosoma 84:535–555CrossRefGoogle Scholar
  17. Dimitrova D, Greilhuber J (2000) Karyotype and DNA content evolution in ten species of Crepis (Asteraceae) distributed in Bulgaria. Bot J Linn Soc 132:281–297CrossRefGoogle Scholar
  18. Dunford MP (1964) A cytogenetic analysis of certain polyploids in Grindelia (Compositae). Am J Bot 51:49–56CrossRefGoogle Scholar
  19. Dunford MP (1969) Chromosome numbers of six Texas species of Grindelia and meiotic analysis of some interspecific hybrids. J Colorado Wyoming Acad Sci 6:20Google Scholar
  20. Dunford MP (1986) Chromosome relationships of diploid species of Grindelia (Compositae) from Colorado, New Mexico and adjacent areas. Am J Bot 73:297–303CrossRefGoogle Scholar
  21. Fregonezi JN, Fernandes T, Domingues Torezan JM, Vieira O, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species ( Solanaceae ) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:97–104CrossRefGoogle Scholar
  22. Fregonezi JN, Rocha C, Torezan JMD, Vanzela ALL (2004) The occurrence of different Bs in Cestrum intermedium and C. strigilatum (Solanaceae) evidenced by chromosome banding. Cytogenet Genome Res 106:184–188PubMedCrossRefGoogle Scholar
  23. Galasso I, Sublimi Saponetti L, Pignone D (1997) Cytotaxonomic studies in Vigna: 3. Chromosomal distribution and reacting properties of the heterochromatin in five wild species of the section Vigna. Caryologia 49:311–319Google Scholar
  24. Garcia S, Lim KY, Chester M, Garnatje T, Pellicer J, Vallés J, Leitch AR, Kovařík A (2009) Linkage of 35S and 5S rRNA genes in Artemisia (family Asteraceae): first evidence from angiosperms. Chromosoma 118:85–97PubMedCrossRefGoogle Scholar
  25. Gerlach WL, Bedbrook JL (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  26. Goodspeed TH (1954) The genus Nicotiana. Waltham MA, USAGoogle Scholar
  27. Gottlob-McHugh SG, Ldvesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L). Merrill and conservation of the 5S rDNA repeat structure in higher plants. Genome 33:486–494PubMedCrossRefGoogle Scholar
  28. Grau J (1976) Chromosomenzahlen von Südamerikanischen Haplopappus Arten. Mitt Bot Staatssamml München 12:403–410Google Scholar
  29. Greilhuber J, Ehrendorfer F (1988) Karyological approaches to plant taxonomy. Animal Plant Sci 1:289–297Google Scholar
  30. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041CrossRefGoogle Scholar
  31. Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, Kulak-Ksiazczyk S, Ksiazczyk T (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann Bot 97:205–216PubMedCrossRefGoogle Scholar
  32. Hemleben V, Werts D (1988) Sequence organization and putative regulatory elements in the 5S rRNA genes of two higher plants (Vigna radiata and Matthiola incana). Gene 62:165–169PubMedCrossRefGoogle Scholar
  33. Huziwara Y (1967) Chromosomal evolution in Aster and related genera. Taxon 16:303–304CrossRefGoogle Scholar
  34. Jackson RC, Dimas CT (1981) Experimental evidence for systematic placement of the Haplopappus phyllocephalus complex (Compositae). Syst Bot 6:8–14CrossRefGoogle Scholar
  35. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725PubMedCrossRefGoogle Scholar
  36. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068PubMedCrossRefGoogle Scholar
  37. Jones AG (1985) Chromosomal feature as generic criteria in the Astereae. Taxon 34:44–54CrossRefGoogle Scholar
  38. Jones RN, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423Google Scholar
  39. Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: So What? Ann Bot 101:767–775Google Scholar
  40. Jong J (1997) Laboratory manual of plant cytological techniques. Royal Botanical Garden, EdinburghGoogle Scholar
  41. Kamari G (1992) Karyosystematic studies on three Crepis species (Asteraceae) endemic to Greece. Plant Syst Evol 182:1–19CrossRefGoogle Scholar
  42. Kato A, Lamb JC, Birchler JA (2004) Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA 101:13554–13559PubMedCrossRefGoogle Scholar
  43. Kulak S, Hasterok R, Maluszynska J (2002) Karyotyping of Brassica amphidiploids using 5S and 25S rDNA as chromosome markers. Hereditas 137:79–80CrossRefGoogle Scholar
  44. Lane MA (1993) Grindelia (gumplant). In: Hickman JC (ed) The Jepson manual: higher plants of California. University California Press, CaliforniaGoogle Scholar
  45. Lane MA, Li JW (1993) Documented chromosome numbers 1993:1. Chromosome number reports in Compositae with emphasis on Tribe Astereae of the Southwestern United States and Mexico. Sida 15:539–546Google Scholar
  46. Lane MA, Hartman RL (1996) Reclassification of North American Haplopappus (Compositae, Astereae) completed: Rayjacksonia gen. nov. Am J Bot 83:356–370CrossRefGoogle Scholar
  47. Lane MA, Morgan DR, Suh Y, Simpson BB, Jansen RK (1996) Relationships of North American genera of Astereae, based on chloroplast DNA restriction site data. In: Hind DJN, Beentje HJ (eds) Compositae, systematics—proceedings of International Compositae Conference, Kew 1994, vol 1. Royal Botanic Gardens, UK, pp 49–77Google Scholar
  48. Levan A, Fredga K, Sandberg A (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  49. Lim KY, Matyasek R, Kovarík A, Leitch A (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606CrossRefGoogle Scholar
  50. Liu B, Brubaker CL, Mergaei G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 43:874–880CrossRefGoogle Scholar
  51. Mandákova T, Münzbergová Z (2006) Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech republic. Ann Bot 98:845–856PubMedCrossRefGoogle Scholar
  52. Marcon BA, Guerra M (2005) Variation in chromosome numbers, CMA bands and 45S rDNA sites in species of Selaginella (Pteridophyta). Ann Bot 95:271–276PubMedCrossRefGoogle Scholar
  53. McLaughlin S (1986) Defferentiation among populations of tetraploid Grindelia camporum. Am J Bot 17:1748–1754CrossRefGoogle Scholar
  54. Miranda M, Ikeda F, Endo T, Morigucki T, Omura M (1997) Comparative analysis on the distribution of heterochromatin in Citrus, Poncirus and Fortunella chromosomes. Chromosome Res 5:86–92PubMedCrossRefGoogle Scholar
  55. Moore A, Bartoli A, Tortosa R, Baldwin B (2012) Phylogeny, biogeography, and chromosome evolution of the amphitropical genus Grindelia (Asteraceae) inferred from nuclear ribosomal and chloroplast sequence data. Taxon 61:211–230Google Scholar
  56. Morgan DR, Simpson BB (1992) A systematic study of Machaeranthera (Asteraceae) and related groups using restriction site analysis of chloroplast DNA. Syst Bot 17:511–531CrossRefGoogle Scholar
  57. Morgan DR (1997) Reticulate evolution in Machaeranthera (Asteraceae). Syst Bot 22:599–615CrossRefGoogle Scholar
  58. Morgan (2003) nrDNA external transcribed spacer (ETS) sequence data, reticulate evolution, and the systematics of Machaeranthera (Asteraceae). Syst Bot 28:179–190Google Scholar
  59. Morton JK (1981) Chromosome numbers in Compositae from Canada and the U.S.A. J Linn Soc Bot 82:357–368CrossRefGoogle Scholar
  60. Moscone EA, Klein F, Lambru M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-colour FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233PubMedGoogle Scholar
  61. Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Pl Syst Evo 202:37–63CrossRefGoogle Scholar
  62. Nesom GL (1978) Chromosome number in Erigeron and Conyza (Compositae). Sida 7:375–381Google Scholar
  63. Nesom GL (1991) Taxonomy of Isocoma (Compositae, Astereae). Phytologia 70:69–114Google Scholar
  64. Nesom GL (1993) Prionopsis (Asteraceae: Astereae) united with Grindelia. Phytologia 75:341–346Google Scholar
  65. Nesom GL (1994) Subtribal classification of the Astereae (Asteraceae). Phytologia 76:193–274Google Scholar
  66. Nesom GL (1997) Synopsis of Stephanodoria (Asteraceae:Astereae). Phytologia 82:107–113Google Scholar
  67. Nesom GL (2000) New subtribes for North American Astereae (Asteraceae). Sida 19:263–268Google Scholar
  68. Nesom GL, Suh Y, Simpson BB (1993) Prionopsis (Asteraceae: Astereae) united with Grindelia. Phytologia 75:341–346Google Scholar
  69. Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186:37–45PubMedCrossRefGoogle Scholar
  70. Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized polyploids (Brassica). Biol J Linn Soc 82:675–688CrossRefGoogle Scholar
  71. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357PubMedCrossRefGoogle Scholar
  72. Raven PH, Solbrig OT, Kyhos DW, Snow R (1960) Chromosome numbers in Compositae. I Astereae. Am J Bot 47:124–132CrossRefGoogle Scholar
  73. Riesenberg LH (2001) Chromosomal rearrangements and speciation. Trends Eco Evo 16:351–358CrossRefGoogle Scholar
  74. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  75. Röser M (1994) Pathways of karyological differentiation in palms (Arecaceae). Plant Syst Evol 189:83–122CrossRefGoogle Scholar
  76. Ruas CF, Vanzela ALL, Santos MO, Fregonezi JN, Ruas PM, Matzenbacher NI, AguiarPerecin MLR (2005) Chromosomal organization and phylogenetic relationship in Hypochaeris species (Asteraceae) from Brazil. Genet Molec Biol 28:129–139CrossRefGoogle Scholar
  77. Ruas PM, Ruas CF, Maffei MD, Marin-Morales MA, Aguiar-Perecin MLR (2000) Chromosome studies in the genus Mikania (Asteraceae). Genet Molec Biol 23:979–984CrossRefGoogle Scholar
  78. Sastri DCK, Hilt R, Appels ES, Lagudah J, Playford BR, Baum BR (1992) An overview of evolution in plant 5S DNA. Pl Syst Evo 183:169–181CrossRefGoogle Scholar
  79. Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962PubMedCrossRefGoogle Scholar
  80. Schwarzacher T, Heslop-Harrison P (2000) Practical in situ hybridization. Bios Scientific Publishers Limited, OxfordGoogle Scholar
  81. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  82. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324PubMedCrossRefGoogle Scholar
  83. Schweizer D, Ambros P (1994) Chromosome banding. In: Gosden JR (ed) Methods in molecular biology. Chromosome analysis protocols. Humana Press, TotowaGoogle Scholar
  84. Semple J (2008) Cytotaxonomy and cytogeography of the goldenaster genus Heterotheca (Asteraceae: Astereae). Botany 86:886–900CrossRefGoogle Scholar
  85. Semple JC (1980) IOPB Chromosome number reports LXVII. Taxon 29:357–358Google Scholar
  86. Semple JC, Chmielewski JG, Lane M (1989) Chromosome number determinations in fam. Compositae, tribe Astereae. III. Additional counts and comments on generic limits and ancestral base numbers. Rhodora 91:296–314Google Scholar
  87. Semple JC, Chmielewski JG, Xiang C (1992) Chromosome number determinations in fam. Compositae, tribe Astereae. IV. Additional reports and comments on the cytogeography and status of some species of Aster and Solidago. Rhodora 94:48–62Google Scholar
  88. Solbrig O (1964) Chromosome number in compositae V. Astereae II. Am J Bot 51:513–519CrossRefGoogle Scholar
  89. Sumner AT (1990) Chromosome banding. Unwin Hyman Limited, LondonGoogle Scholar
  90. Taketa S, Harrison GE, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9CrossRefGoogle Scholar
  91. Torrell M, Cerbah M, Siljak-Yakovlev S, Valles J (2003) Molecular cytogenetics of the genus Artemisia (Asteraceae, Anthemideae): fluorochrome banding and fluorescence in situ hybridization. I. Subgenus Seriphidium and related taxa. Plant Syst Evol 239:141–153CrossRefGoogle Scholar
  92. Urdampilleta J, Amat A, Bidau C (2005) Karyotypic studies and morphological analysis of some reproductive features in five species of Conyza (Astereae: Astereceae) from northeastern Argentina. Bol Soc Arg Bot 40:91–99Google Scholar
  93. Vallès J, McArthur ED (2001) Artemisia systematics and phylogeny: Cytogenetic and molecular insights. In: McArthur ED, Fairbanks DJ (eds) (comp) Shrubland ecosystem genetics and biodiversity. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Provo, UtahGoogle Scholar
  94. Vanzela ALL, Ruas CF, Oliveira MF, Ruas PM (2003) Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetica 114:105–111CrossRefGoogle Scholar
  95. Watanabe K, Yahara T, Denda T, Kosuge K (1999) Chromosomal evolution in the genus Brachyscome (Asteraceae, Astereae): statistical tests regarding correlation between changes in karyotype and habit using phylogenetic information. J Plant Res 112:145–161CrossRefGoogle Scholar
  96. Whitaker T, Steyermark J (1935) Cytological aspects of Grindelia species. Bull Torrey Bot Club 62:69–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Natalia Cecilia Moreno
    • 1
    • 3
  • L. Stiefkens
    • 1
  • M. L. Las Peñas
    • 1
    • 3
  • A. Bartoli
    • 2
  • R. Tortosa
    • 2
    • 3
  • G. Bernardello
    • 1
    • 3
  1. 1.Instituto Multidisciplinario de Biología Vegetal UNC-CONICETCórdobaArgentina
  2. 2.Facultad de AgronomíaUBABuenos AiresArgentina
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Cdad. de Buenos AiresArgentina

Personalised recommendations