Plant Systematics and Evolution

, Volume 298, Issue 6, pp 1195–1210 | Cite as

A dynamic evolution of chromosome in subgenus Potamogeton revealed by physical mapping of rDNA loci detection

  • Tao Wan
  • Xiao-lin Zhang
  • Juraj Gregan
  • Ying Zhang
  • Pin Guo
  • You-hao GuoEmail author
Short Communication


In this study, we analyzed 12 species in the subgenus Potamogeton (8 tetraploids and 2 diploids, 2 putative tetraploid hybrids) at the chromosomal level, including counting the chromosome number and physically mapping the rDNA. The extent of variation in the chromosome number and rDNA loci was determined in the Potamogeton species on both the inter- and intra-specific level. Moreover, one of the hybrid sets (P. perfoliatus ♂ × P. wrightii ♀) was picked for performing artificial pollination for producing F1 generation adults and for sequential morphological character analysis and FISH detection. After comparing the parental species and natural hybrids from three different geographic locations, the intraspecific variations of rDNA loci were revealed in sampled plants; in addition, comparisons between artificial F1 and natural hybrids (P. × intortusifolius) showed a rapid change of 45S rDNA loci in response to the interspecific hybridization. We also compared our results concerning rDNA patterns with phylogenetic documents to derive complementary clues to karoytype evolution and interspecific relationships. Based on frequent hybridizations and active clonal reproduction with weak genetic selection, the rDNA chromosomal repatterning, such as the gain or loss of rDNA loci together with rDNA movements, might be one trend of chromosome evolution in this genus.


Potamogeton Interspecific hybridization Physical mapping of rDNAs Karyotype evolution Chromosome evolution 



The research was supported by the National Natural Science Foundation of China (no. 30430050). We are grateful to Prof. L.J. Li, of the Key Laboratory of MOE for Plant Developmental Biology, Wuhan University, for kindly providing the rDNA probe and his kind advice on our work. We are also indebted to Prof. C.Y. Song, Wuhan University, and Prof. D. M. Zhang, the Laboratory of Systematic and Evolutionary Botany, Chinese Academy of Sciences, for helpful comments on the manuscript. We thank Prof. Q.F. Wang, Wuhan Arboretum of the Chinese Academy of Sciences, for providing the field for the preservation of experimental plants.


  1. Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583PubMedCrossRefGoogle Scholar
  2. Ansari HA, Ellison NW, Reader SM (1999) Molecular cytogenetic organization of 5S and 18S–16S rDNA loci in white clover (Trifolium repens L.) and related species. Ann Bot 83:199–206CrossRefGoogle Scholar
  3. Arohonka T (1982) Chromosome counts of vascular plants of the island Seili in Nauvo. SW Finland Turun Yliopiston Biologian-Laitoksen Julkaisuja 3:1–12Google Scholar
  4. Arumuganthan K, Martin GB, Tanksley SD, Earle ED (1994) Chromosome 2-specific DNA clone from flowsorted chromosomes of tomato. Mol Genet Genomics 22:551–558Google Scholar
  5. Babcock EB (1934) Basic chromosome numbers in plants with special reference to the compositae. New Phytol 33:386–388CrossRefGoogle Scholar
  6. Badaeva ED, Friebe B, Gills BS (1996) Genome differentiation in Aegilops. I. distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306PubMedCrossRefGoogle Scholar
  7. Cai Q, Zhang D, Liu ZL, Wang XR (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722PubMedCrossRefGoogle Scholar
  8. Castilho A, Heslop-Harrison JS (1994) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96CrossRefGoogle Scholar
  9. Choo KH, Vissel B, Brown R, Filby RG, Earle E (1988) Homologous alpha satellite sequences on human acrocentric chromosomes with selectivity for chromosomes 13, 14 and 21: implications for recombination between nonhomologues and Robertsonian translocations. Nucleic Acids Res 16:1273–1284PubMedCrossRefGoogle Scholar
  10. D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33PubMedCrossRefGoogle Scholar
  11. D’Hont A, Grivet L, Feldmann P, Rao S, Berding N, Glaszmann JC (1996) Characterization of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413PubMedGoogle Scholar
  12. Du ZY, Yang CF, Cheng JM, Guo YH (2009) Nuclear and chloroplast DNA sequences data support the origin of Potamogeton intortusifolius J.B. He in China as a hybrid between P. perfoliatus Linn. and P. wrightii Morong. Aquat Bot 91:47–50CrossRefGoogle Scholar
  13. Fant JB, Kamau EM, Preston CD (2003) Chloroplast evidence for the multiple origins of the hybrid Potamogeton sudermanicus Hagstr. Aquat Bot 75:351–356CrossRefGoogle Scholar
  14. Frello S, Heslop-harrison JS (2000) Chromosomal variation in Crous vernus Hill (Iridaceae) investigated by in situ hybridization of rDNA and a tandemly repeated sequence. Ann Bot 86:317–322CrossRefGoogle Scholar
  15. Grace JB (1993) The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquat Bot 44:159–180CrossRefGoogle Scholar
  16. Gustafson JP, Dille JE (1992) The chromosome location of Oryza sativa recombination linkage group. Proc National Academy of Sci USA 89:8646–8650CrossRefGoogle Scholar
  17. Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422PubMedCrossRefGoogle Scholar
  18. Harada I (1942) Chromosomenzahlen bei der Gattung Potamogeton. Medizin Biol 1:9–12Google Scholar
  19. Harada I (1956) Cytological studies in Helobiae: 1. Chromosome idiograms and a list of chromosome numbers in seven families. Cytologia 21:306–328CrossRefGoogle Scholar
  20. Haynes RR (1974) A revision of North American Potamogeton subsection Pusilli (Potamogetonaceae). Rhodora 76:564–649Google Scholar
  21. Haynes RR, Hellquist CB (1978) The distribution of the aquatic vascular plants of Douglas Lake, Cheboygan County Michigan. Michigan Bot 17:183–191Google Scholar
  22. He JB (1988) New plants from Hubei China. Bull Bot Res 8(3):125Google Scholar
  23. Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequences and markers to chromatin and chromosomes. Plant Cell 12:617–635PubMedCrossRefGoogle Scholar
  24. Hirai H, Yamamoto MT, Ogura K, Satta Y, Yamada M, Taylor RW, Imai HT (1994) Multiplication of 28S rDNA and NOR activity in chromosome evolution among ants of the Myrmecia pilulosa species complex. Chromosoma 103:171–178PubMedCrossRefGoogle Scholar
  25. Hollingsworth PM, Preston CD, Gornall RJ (1995) Isozyme evidence for hybridization between Potamogeton natans and P. nodosus (Potamogetonaceae) in Britain. Bot J Linn Soc 117:59–69Google Scholar
  26. Hollingsworth PM, Preston CD, Gornall RJ (1998) Euploid and aneuploid evolution in Potamogeton (Potamogetonaceae): a factual basis for interpretation. Aquat Bot 60:337–358CrossRefGoogle Scholar
  27. Huang J, Ma L, Yang F, Fei SZ, Li LJ (2008) 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS ONE 3(5):e2167PubMedCrossRefGoogle Scholar
  28. Jones K (1970) Chromosome changes in plant evolution. Taxon 19:172–179CrossRefGoogle Scholar
  29. Kalkman L, Van Wijk RJ (1984) On the variation in chromosome number in Potamogeton pectinatus L. Aquatic Botany 20:343–349CrossRefGoogle Scholar
  30. Kaplan Z, Fehrer J (2006) Comparison of natural and artificial hybridization in Potamogeton. Preslia 78:303–316Google Scholar
  31. Kaplan Z, Fehrer J (2007) Molecular evidence for a natural primary triple hybrid in plants revealed from direct sequencing. Ann Bot 99:1213–1222PubMedCrossRefGoogle Scholar
  32. Kaplan Z, Štěpánek J (2003) Genetic variation within and between populations of Potamogeton pusillus agg. Plant Syst Evol 239:95–112CrossRefGoogle Scholar
  33. Kaplan Z, Plačková I, Štěpánek J (2002) Potamogeton × fluitans (P. natans × P.lucens) in the Czech Republic II. Isozyme analysis. Preslia 74:187–195Google Scholar
  34. Leitch AR, Heslop-Harrison JS (1992) Physical mapping of the 18S–5.8S-26S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018CrossRefGoogle Scholar
  35. Les DH (1983) Taxonomic implications of aneuploidy and polyploidy in Potamogeton Potamogetonaceae. Rhodora 85:301–323Google Scholar
  36. Les DH, Sheridan DJ (1990) Hagstrŏm’s concept of phylogenetic relationships in Potamogeton L. (Potamogetonaceae). Taxon 39:41–58CrossRefGoogle Scholar
  37. Levin DA (2002) The role of chromosome change in plant evolution. Oxford University Press, OxfordGoogle Scholar
  38. Li W, Xia LQ, Li JQ, Wang GX (2004) Genetic diversity of Potamogeton maackianus in the Yangtze River. Aquat Bot 80:227–240CrossRefGoogle Scholar
  39. Lida S, Kandono Y (2002) Genetic diversity and origin of Potamogeton anguillanus (Potamogetonaceae) in Lake Biwa, Japan. J Plant Res 115:11–16CrossRefGoogle Scholar
  40. Lindqvist C, Laet JD, Haynes RR, Aagesen L, Keener BR, Albert VA (2006) Molecular phylogenetics of an aquatic plant lineage, Potamogetonaceae. Cladistics 22:1–21CrossRefGoogle Scholar
  41. Löve A, Löve D (1956) Cytotaxonomical conspectus of the Icelandic flora. Acta Horti Gotoburgensis 20:65–291Google Scholar
  42. Luo R, Wang C, Zhang D (2006) Variations of 18S rDNA loci among six populations of Paeonia obovata Maxim. (Paeoniaceae) revealed by fluorescence in situ hybridization. J Integrat Plant Biol 48:497–502CrossRefGoogle Scholar
  43. Maluszynska J, Heslop-Harrison P (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781PubMedCrossRefGoogle Scholar
  44. Matyášek R, Fulnecek J, Lim KY, Leitch AR, Kovarik A (2002) Evolution of 5S rDNA unit arrays in the plant genus Nicotiana (Solanaceae). Genome 45:556–562CrossRefGoogle Scholar
  45. Miki S (1937) The water phanerogams in Japan, with special reference to those of the province Yamashiro (in Japanese). Reports Historical Remains Scen Places Nat Monum in Kyoto Prefect 18:1–127Google Scholar
  46. Mishima M, Ohmiho N, Fukai K, Yahara T (2002) Trends in site number change of r DNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110:550–558PubMedCrossRefGoogle Scholar
  47. Misra MP (1972) Cytological studies in some Indian Potamogeton and Aponogeton species. Bull Bot Soc Bengal 26:47–51Google Scholar
  48. Moore RJ (Ed) (1973) Index to plant chromosome numbers 1967–1971. Reg Veg 90:1–539Google Scholar
  49. Mukai T, Endo TR, Gill BS (1991) Physical mapping of 18S–26S multigene family in common wheat: identification of a new locus. Chromosoma 100:71–78CrossRefGoogle Scholar
  50. Ottonello D, Romano S, Alliata N (1985) Numeri cromosomici per la flora Italiana: 1037–1048. Inform Bot Ital 17:91–98Google Scholar
  51. Palmgren O (1939) Cytological studies in Potamogeton. Preliminary note. Bot Not 1939:246–248Google Scholar
  52. Philips RL, Wang SS, Weber DF, Kleese RA (1972) The nucleolus organizer region (NOR) of maize: a summary. Genetics 74(Suppl 2):212Google Scholar
  53. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2006) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc National Academy Sci USA 101:18240–18245CrossRefGoogle Scholar
  54. Preston CD, Hollingsworth PM (1998) A reassessment of hybrid Potamogeton × gessnacensis G. Fisch. (P. natans × P. polygonifolius, Potamogetonaceae) in Britain. Watsonia 22:61–68Google Scholar
  55. Probatova NS, Sokolovskaya AP (1984) Chromosome numbers in the representatives of the families Alismataceae, Hydrocharitaceae, Hypericaceae, Juncaginaceae, Poaceae, Potamogetonaceae, Ruppiaceae, Sparganiaceae, Zannichelliaceae, Zosteraceae from the Far East of USSR. Bot J (Leningrad) 69:1700–1702Google Scholar
  56. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc National Academy Sci USA 101:14818–14823CrossRefGoogle Scholar
  57. Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82(7):944–953CrossRefGoogle Scholar
  58. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358PubMedCrossRefGoogle Scholar
  59. Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307PubMedCrossRefGoogle Scholar
  60. Schubert I, Wobus U (1985) In situ hybridization conWrms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148CrossRefGoogle Scholar
  61. Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759PubMedCrossRefGoogle Scholar
  62. Snowdon RJ (2007) Cytogenetics and genome analysis in Brassica crops. Chromosome Res 15:85–95PubMedCrossRefGoogle Scholar
  63. Stahl A, Luciani JM, Hartung M (1983) Structural basis for Robertsonian translocations in man: association of ribosomal genes in the nucleolar fibrillar center in meiotic spermatocytes and oocytes. Proc National Academy Sci USA 80:5946–5950CrossRefGoogle Scholar
  64. Taketa S, Harrison G, Heslop-Harrison JS (1999) Comparative physical mapping of the 5S and 18S–25S rDNA in nine wild Hordeum species and cytotypes. Theor Appl Genet 98:1–9CrossRefGoogle Scholar
  65. Takusagawa H (1939) Chromosome numbers in Potamogeton. In: Volumen jubilare pro Professore Sadao Yoshida. Osaka Natural History Society, Osaka 1, pp 1066–1067Google Scholar
  66. Takusagawa H (1961) Cytological studies in the genus Potamogeton in Japan. Bull Shimane Agric Coll 9:237–269Google Scholar
  67. Talavera S, García Murillo P (1992) Números cromosomáticos de plantas occidentales, 661–667. An Jard Bot Madrid 50:83Google Scholar
  68. Uchiyama H (1989) Karyomorphological studies on some taxa of the Helobiae. J Sci Hiroshima Univ Ser B Div 2 Bot 22:271–352Google Scholar
  69. Uhríková A, Feráková V (1978) IOPB chromosome number reports LXI. Taxon 27:379–380Google Scholar
  70. Wang QD, Zhang T, Wang JB (2007) Phylogenetic relationships and hybrid origin of Potamogeton species (Potamogetonaceae) distributed in China: insights from the nuclear ribosomal internal transcribed spacer sequence (ITS). Plant Syst Evol 267:65–78CrossRefGoogle Scholar
  71. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc National Academy Sci USA 92:280–284CrossRefGoogle Scholar
  72. White MJD (1973) Animal cytology and evolution. Cambridge University Press, CambridgeGoogle Scholar
  73. Wiegand KM (1899) The development of the microsporangium and microspores in Convallaria and Potamogeton. Bot Gazette 28:328–359CrossRefGoogle Scholar
  74. Wiegleb G (1988) Notes on pondweeds—outlines for a monographical treatment of the genus Potamogeton L. Repertorium novarum specierum regni vegetabilis 99:249–266Google Scholar
  75. Wiegleb G, Kaplan Z (1998) An account of the species of Potamogeton L. (Potamogetonaceae). Folia Geobotonica 33:241–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tao Wan
    • 1
  • Xiao-lin Zhang
    • 2
  • Juraj Gregan
    • 3
  • Ying Zhang
    • 1
  • Pin Guo
    • 1
  • You-hao Guo
    • 1
    Email author
  1. 1.Laboratory of Plant Systematics and Evolutionary BiologyCollege of Life Science, Wuhan UniversityWuhanChina
  2. 2.Institute of HydrobiologyChinese Academy of SciencesWuhanChina
  3. 3.Max F. Perutz Laboratories, Department of Chromosome BiologyUniversity of ViennaViennaAustria

Personalised recommendations