Plant Systematics and Evolution

, Volume 298, Issue 6, pp 1185–1193 | Cite as

Genome size and base composition of Bromeliaceae species assessed by flow cytometry

  • Fernanda Campanharo Favoreto
  • Carlos Roberto Carvalho
  • Andreia Barcelos Passos Lima
  • Adésio Ferreira
  • Wellington Ronildo ClarindoEmail author
Short Communication


Flow cytometry (FCM) has been used to estimate the nuclear DNA content of Bromeliaceae species, which constitutes relevant information for studies of taxonomy, evolution, genetic diversity, and reproductive biology in bromeliads. Nevertheless, C values have only been estimated for 58 out of the 3,140 existing Bromeliaceae species. Aiming to contribute to the genome database of Bromeliaceae, the current study was carried out to measure the nuclear DNA content and base composition of Bromelioideae and Tillandsioideae species occurring in the Atlantic Rainforest. The most adequate FCM procedure provided histograms exhibiting G0/G1 peaks with coefficients of variation below 5%, so that these histograms were used to measure the mean 2C and AT% values for all collected Bromelioideae and Tillandsioideae species. These values were statistically compared, and dendrograms were plotted. A second comparison was performed among all mean 2C values reported for Pitcairnioideae, Tillandsioideae, and Bromelioideae species. In accordance with previous statistical comparisons, two groups were formed: cluster 1, composed by Tillandsia loliacea, Tillandsia usneoides, and Tillandsia cyanea, and cluster 2, gathering other 69 species. Based on these results, we concluded that FCM was a rapid, accurate, and reliable technique to assess genome size and base composition. Furthermore, the FCM data reported here will contribute to the Monocot and Bromeliaceae database, which still displays several ongoing gaps, especially for endemic species.


2C DNA content Base composition Bromeliaceae Bromelioideae Tillandsioideae 



We thank FAPES (Fundação de Amparo à Pesquisa do Espírito Santo), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), and CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), Brazil, for their financial support.


  1. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218. doi: 10.1007/BF02672069 CrossRefGoogle Scholar
  2. Barow M, Meister A (2002) Lack of correlation between AT frequency and genome size in higher plants and the effect of nonrandomness of base sequences on dye binding. Cytometry 47:1–7. doi: 10.1002/cyto.10030 PubMedCrossRefGoogle Scholar
  3. Bellintani MC, Assis JG, Oliveira ALC (2005) Chromosomal evolution of Bromeliaceae. Cytologia 70:129–133CrossRefGoogle Scholar
  4. Benzing D (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  5. Bogunic F, Muratovic E, Brown SC, Siljak-Yakovlev S (2003) Genome size and base composition of five Pinus species from the Balkan region. Plant Cell Rep 22:59–63. doi: 10.1007/s00299-003-0653-2 PubMedCrossRefGoogle Scholar
  6. Ceita GO, Assis JGA, Guedes MLS, Oliveira ALC (2008) Cytogenetics of Brazilian species of Bromeliaceae. Bot J Linn Soc 158:189–193. doi: 10.1111/j.1095-8339.2008.00776.x CrossRefGoogle Scholar
  7. Clarindo WR, Carvalho CR (2009) Comparison of the Coffea canephora and C. arabica karyotype based on chromosomal DNA content. Plant Cell Rep 28:73–81. doi: 10.1007/s00299-008-0621-y PubMedCrossRefGoogle Scholar
  8. Cotias-de-Oliveira ALP, Assis JGA, Bellintani MC, Andrade JCS, Guedes MLS (2000) Chromosome numbers in Bromeliaceae. Genet Mol Biol 23:173–177. doi: 10.1590/S1415-47572000000100032 CrossRefGoogle Scholar
  9. Cotias-de-Oliveira ALP, Assis JGA, Ceita GO, Palmeira ACL, Guedes MLS (2004) Chromosome number for Bromeliaceae species occurring in Brazil. Cytologia 69:161–166CrossRefGoogle Scholar
  10. Cros J, Combes MC, Chabrillange N, Duperray C, Angles AM, Hamon S (1995) Nuclear DNA content in the subgenus Coffea (Rubiaceae): inter- and intra-specific variation in African species. Can J Bot 73:14–20CrossRefGoogle Scholar
  11. Cruz CD (2010) Programa GENES- Aplicativo Computacional em Genética e Estatística. Editora UFV, ViçosaGoogle Scholar
  12. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110. doi: 10.1093/aob/mci005 PubMedCrossRefGoogle Scholar
  13. Doležel J, Göhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106PubMedCrossRefGoogle Scholar
  14. Doležel J, Sgorbati S, Lucretti S (1992) Comparation of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Plant Physiol 85:625–631CrossRefGoogle Scholar
  15. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA and genome size of trout and human. Cytometry 51:127–128PubMedCrossRefGoogle Scholar
  16. Duval MF, Buso GSC, Ferreira FR, Noyer JL, Coppens d’Eeckenbrugge G, Hamon P, Ferreira ME (2003) Relationships in Ananas and other related genera using chloroplast DNA restriction site variation. Genome 46:990–1004. doi: 10.1139/G03-074 PubMedCrossRefGoogle Scholar
  17. Ebert I, Till W (1997) Nuclear genome size in Pitcairnioideae (Bromeliaceae) with emphasis on the genus Pitcairnia. Abstracts, angiosperm genome size discussion meeting, 11–12 September, pp 15. Royal Botanical Gardens, KewGoogle Scholar
  18. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  19. Gilmartin AJ, Brown GK (1987) Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. Syst Bot 12:493–500CrossRefGoogle Scholar
  20. Gitaí J, Horres R, Benko-Iseppon AM (2005) Chromosomal features and evolution of Bromeliaceae. Plant Syst Evol 253:65–80. doi: 10.1007/s00606-005-0306-8 CrossRefGoogle Scholar
  21. Givnish TJ, Millam KC, Berry PE, Kenneth J, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of bromeliaceae inferred from ndhf sequence data. Aliso 23:3–26Google Scholar
  22. Givnish TJ, Barfuss MHJ, Ee BV, Riina R, Schulte K, Horres R, Gonsiska PA, Jabaily RS, Crayn DM, Smith AC, Winter K, Brown GK, Evans TM, Holst BK, Luther H, Till W, Zizka G, Berry PE, Sytsma KJ (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895. doi: 10.3732/ajb.1000059 PubMedCrossRefGoogle Scholar
  23. Godelle B, Cartier D, Marie D, Brown CS, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculations genomic base composition. Cytometry 14:618–626PubMedCrossRefGoogle Scholar
  24. Greilhuber J, Obermayer R (1997) Genome size and maturity group in Glycine max (soybean). Heredity 78:547–551CrossRefGoogle Scholar
  25. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 177–215Google Scholar
  26. Horres R, Schulte K, Weising K, Zizka G (2007) Systematics of Bromelioideae (Bromeliaceae)—evidence from molecular and anatomical studies. Aliso 23:27–43Google Scholar
  27. Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613PubMedCrossRefGoogle Scholar
  28. Leitch IJ, Beaulieu JM, Chase MW, Leitch AR, Fay MF (2010) Genome size dynamics and evolution in monocots. J Bot. doi: 10.1155/2010/862516 Google Scholar
  29. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98(679):689. doi: 10.1093/aob/mcl141 Google Scholar
  30. Louzada RB, Palma-Silva C, Corrêa AM, Kaltchuk-Santos E, Wanderley MGL (2010) Chromosome number of Orthophytum species (Bromeliaceae). Kew Bull 65:53–58. doi: 10.1007/s12225-010-9175-6 CrossRefGoogle Scholar
  31. Luther HE (2008) An alphabetical list of bromeliad binomials, 11th edn. The Bromeliad Society International, SarasotaGoogle Scholar
  32. Marchant CJ (1967) Chromosome evolution in the Bromeliaceae. Kew Bull 21:161–168CrossRefGoogle Scholar
  33. Martinelli G, Vieira CM, Gonzalez M, Leitman P, Piratininga A, Costa AF, Forzza RC (2008) Bromeliaceae da Mata Atlântica Brasileira: lista de espécies, distribuição e conservação. Rodriguésia 59:209–258Google Scholar
  34. Meister A (2005) Calculation of binding length of base-specific DNA dyes by comparison of sequence and flow cytometric data. Application to Oryza sativa and Arabidopsis thaliana. J Theoret Biol 232:93–97. doi: 10.1016/j.jtbi.2004.07.022 CrossRefGoogle Scholar
  35. Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 77–88Google Scholar
  36. Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewiez Z, Crissman HA, Robinson JP (eds) Methods in cell biology, vol 33. Academic Press, San Diego, pp 105–110Google Scholar
  37. Praça-Fontes MM, Carvalho CR, Clarindo WR, Cruz CD (2011) Revisiting the DNA C-values of the genome size-standards used in plant flow cytometry to choose the “best primary standards”. Plant Cell Rep 30:1183–1191. doi: 10.1007/s00299-011-1026-x PubMedCrossRefGoogle Scholar
  38. Ramírez-Morillo IM, Brown GK (2001) The origin of the low chromosome number in Cryptanthus (Bromeliaceae). Syst Bot 26:722–726. doi: 10.1043/0363-6445-26.4.722 Google Scholar
  39. Sass C, Specht CD (2010) Phylogenetic estimation of the core Bromelioids with an emphasis on the genus Aechmea (Bromeliaceae). Mol Phylog Evol 55:559–571. doi: 10.1016/j.ympev.2010.01.005 CrossRefGoogle Scholar
  40. Schulte K, Horres R, Zizka G (2005) Molecular phylogeny of Bromelioideae and its implications on biogeography and the evolution of CAM in the family (Poales, Bromeliaceae). Senckenbergiana Biol 85:113–125Google Scholar
  41. Schulte K, Barfuss MHJ, Zizka G (2009) Phylogeny of Bromelioideae (Bromeliaceae) inferred from nuclear and plastid DNA loci reveals the evolution of the tank habit within the subfamily. Mol Phylog Evol 51:327–339. doi: 10.1016/j.ympev.2009.02.003 CrossRefGoogle Scholar
  42. Schwencke J, Bureau JM, Crosnier MT, Brown S (1998) Cytometric determination of genome size and base composition of tree species of three genera of Casuarinaceae. Plant Cell Rep 18:346–349CrossRefGoogle Scholar
  43. Sgorbati S, Labra M, Grugni E, Barcaccia G, Galasso G, Boni U, Mucciarelli M, Citterio S, Iramátegui AB, Gonzales LV, Scannerini S (2004) A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biol 6:222–230. doi: 10.1055/s-2004-817802 PubMedCrossRefGoogle Scholar
  44. Shapiro HM (2003) Practical flow cytometry. Wiley-Liss, New JerseyCrossRefGoogle Scholar
  45. Siljak-Yakovlev S, Peccenini S, Muratovic E, Zoldos V, Robin O, Vallès J (2003) Chromosomal differentiation and genome size in three European mountain Lilium species. Plant Syst Evol 236:165–173. doi: 10.1007/s00606-002-0240-y CrossRefGoogle Scholar
  46. Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89. doi: 10.1126/science.1163197 PubMedCrossRefGoogle Scholar
  47. Smith LB, Downs RJ (1974) Pitcairnioideae (Bromeliaceae). Fl Neotrop Monogr 14:1–662Google Scholar
  48. Smith LB, Till W (1998) Bromeliaceae. In: Kubitzki K (ed) The families and genera of vascular plants, flowering plants. Monocots: Alismatanae and Commelinanae (except Gramineae), vol 4. Springer, Berlin, pp 74–99Google Scholar
  49. Versieux LM (2008) Checklist and one new species of Bromeliaceae from Pico do Itambé, Minas Gerais, Brazil. Bot J Linn Soc 158:709–715. doi: 10.1111/j.1095-8339.2008.00895.x CrossRefGoogle Scholar
  50. Wendt T, Canela MBF, De Faria APG, Rios RI (2001) Reproductive biology and natural hybridization between two endemic species of Pitcairnia (Bromeliaceae). Am J Bot 88:1760–1767PubMedCrossRefGoogle Scholar
  51. Zonneveld BJM, Leitch IJ, Bennet D (2005) First nuclear DNA amounts in more than 300 Angiosperms. Ann Bot 96:229–244. doi: 10.1093/aob/mci170 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Fernanda Campanharo Favoreto
    • 1
  • Carlos Roberto Carvalho
    • 2
  • Andreia Barcelos Passos Lima
    • 1
  • Adésio Ferreira
    • 1
  • Wellington Ronildo Clarindo
    • 1
    Email author
  1. 1.Laboratório de Microscopia e Laboratório de Biotecnologia, Departamento de Produção Vegetal, Centro de Ciências AgráriasUniversidade Federal do Espírito SantoAlegreBrazil
  2. 2.Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da SaúdeUniversidade Federal de ViçosaViçosaBrazil

Personalised recommendations