Plant Systematics and Evolution

, Volume 298, Issue 2, pp 511–522 | Cite as

Characterization of two chemotypes of Pinus pinaster by their terpene and acid patterns in needles

  • Carlos Arrabal
  • María Concepción García-Vallejo
  • Estrella Cadahia
  • Manuel Cortijo
  • Brigida Fernández de Simón
Original Article


The existence of two chemotypes of Pinus pinaster, on the basis of the chemical composition of the resin acids in their needles, is known. An investigation was performed on 54 samples of needles of Spanish Pinus pinaster to study the differences between these chemotypes on the basis of monoterpene, sesquiterpene, neutral diterpene, fatty acid, and resin acid composition. One-hundred and twelve compounds were identified by GC–FID and GC–MS. Statistical analysis of the results established the existence of two groups or chemotypes, in the ratio of 5:1. In one chemotype, total acid compounds were more abundant than neutral compounds, whereas in the other the concentrations of both neutral and acid compounds were similar. Distinction of the chemotypes was based on the presence/absence of a sesquiterpene (germacrene d-4-ol acetate), neutral diterpenes (8(14),13(15)-abietadiene, anticopalol, an isomer of anticopalol, and pimarol), fatty acids (10-octadecenoic, 14-hydroxy-10-octadecenoic, and 13-hydroxy-9-octadenoic acids and an unidentified fatty acid), and resin acids (levopimaric + palustric, eperuic, and anticopalic acids, and three isomers of anticopalic acid); and on the different relative percentages of other compounds of these types. This study gives a wide view of the composition of the needles of Pinus pinaster, improving the differentiation of chemotypes on the basis of terpene and acid composition.


Pinus pinaster Needles Chemotypes Terpenes Acids 



This work was financially supported by Project SC97-118-C2-1 from MAPA (Ministry of Agriculture, Fisheries and Food, Spain). We wish to thank Dr Duane F. Zinkel for kindly supplying authentic samples of some resin acids and Dr Ricardo Alía for his valuable assistance.


  1. Adams RP (1989) Identification of essential oils by ion trap mass spectroscopy. Academic Press, Inc., San DiegoGoogle Scholar
  2. Arrabal C, Cortijo M (1997) Ácidos resínicos en acículas de Pinus pinaster. In: II Congreso Forestal Español, Pamplona, pp 123–128Google Scholar
  3. Beverly MB, Basile F, Voorhees KJ (1997) Fatty acid analysis of beer spoiling microorganism using pyrolysis mass spectrometry. J Am Soc Brew Chem 55:79–82Google Scholar
  4. Croteau R, Johnson MA (1985) Biosynthesis of terpenoid wood extractives. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, New York, pp 379–439Google Scholar
  5. Dob T, Berramdane T, Chelghoum C (2005) Analysis of essential oil from the needles of Pinus pinaster growing in Algeria. Chem Nat Compd 41(5):545–548CrossRefGoogle Scholar
  6. Domínguez-Garrido M, García-Martín D, García-Vallejo MC (1988) The essential oils of needles from Spanish Pinus pinaster Ait. In: Lawrence BM, Mookherjee BD, Willis BJ (eds) Flavors and fragances: a world perspective. Elsevier Science Publishers, Amsterdam, pp 211–229Google Scholar
  7. Dominguez M, García-Vallejo MC, Sanz J, García-Martín D (1989) Diterpene hydrocarbons in the essential oil of needles of Pinus pinaster Ait. In: Ecological chemistry and biochemistry of plant terpenoids-an international symposium, pp A-6Google Scholar
  8. Ekman R (1979) Modified resin acids in the reaction zone of Fomes annosus-affected sapwood of Norway spruce. Acta Acad Abo (Series B) 39:1–7Google Scholar
  9. Enzell CR, Ryhage R (1965) Mass spectrometric studies of diterpenes. I. Carbodicyclic diterpenes. Ark Kem 23:367–399Google Scholar
  10. Enzell CR, Wahlberg I (1969) Mass spectrometric studies of diterpenes. 6. Aromatic diterpenes. Acta Chem Scand 23:871–891PubMedCrossRefGoogle Scholar
  11. Forrest GI (1987) A range wide comparison of outlying and central lodge pole pine populations based on oleoresin monoterpene analysis. Biochem Syst Ecol 15:19–30CrossRefGoogle Scholar
  12. Galletti GC, Modafferi V, Poiana M, Bocchini P (1995) Analytical pyrolysis and thermally assisted hydrolysis-methylation of wine tannin. J Agric Food Chem 43:1859–1863CrossRefGoogle Scholar
  13. Gallis AT, Panetsos KP (1997) Use of cortical terpenes to discriminate Pinus brutia (TEN.), Pinus halepensis (MILL.) and their hybrids. Silvae Genet 46:82–88Google Scholar
  14. Gref R, Lindgren D (1984) The inheritance of pinifolic acid in Scots pine (Pinus sylvestris L.) needles. Silvae Genet 33:235–237Google Scholar
  15. Hall GD, Langenheim JH (1987) Geographic variation in leaf monoterpenes of Sequoia sempervivens. Biochem Syst Ecol 15:31–43CrossRefGoogle Scholar
  16. Hmamouchi M, Hamamouchi J, Zouhdi M (2001) Chemical and antimicrobial properties of essential oils of five Moroccan Pinaceae. J Essent Oil Res 13:298–302Google Scholar
  17. Hu ZL, Li XP, Bao H (1992) Distribution of fatty acids from the Pinus seed oils and a chemotaxonomic survey. J Plant Resour Environ 1:15–18Google Scholar
  18. Kleinhentz M, Jactel H, Menassieu P (1999) Terpene attractant candidates of Dioryctria sylvestrella in maritime pine (Pinus pinaster) oleoresin, needles, liber and headspace samples. J Chem Ecol 25(12):2741–2756CrossRefGoogle Scholar
  19. Lang KJ (1994) Abies alba Mill.: differentiation of provenances and provenance groups by the monoterpene patterns in the cortex resin of twigs. Biochem Syst Ecol 22:53–63CrossRefGoogle Scholar
  20. Lange W, Weiβmann G (1987) Composition of neutrals from gum rosin of Pinus sylvestris L., Pinus nigra austriaca Endl. and Pinus pinaster Ait. Holz als Roh- und Werkstoff 45:345–349CrossRefGoogle Scholar
  21. Lange W, Weiβmann G (1989) The composition of the diterpene hydrocarbons of the gum oleoresin from Pinus nigra-austriaca Endl., Pinus-sylvestris L and Pinus-pinaster Ait. Holzfors 43(6):359–362CrossRefGoogle Scholar
  22. Lange W, Weiβmann G (1991) Studies on the gum oleoresins of Pinus resinosa Ait. and Pinus pinea L. Holz Roh Werkst 49:476–480CrossRefGoogle Scholar
  23. Macchioni F, Cioni PL, Flamini G, Morelli I, Maccioni S, Ansaldi M (2003) Chemical composition of essential oils from needles, branches and cones of Pinus pinea, P. halepensis, P. pinaster and P. nigra from central Italy. Flavour Fragr J 18:139–143CrossRefGoogle Scholar
  24. Ministerio de Agricultura Pesca y Alimentación (MAPA) (2003) Anuario de Estadística Agroalimentaria, MadridGoogle Scholar
  25. Müller-Starck G, Baradat P, Bergmann F (1992) Genetic variation within European tree species. New Forest 6:23–47CrossRefGoogle Scholar
  26. Nerg A, Kainulainen P, Vuorinen M, Hanso M, Holopainen JK, Kurkela T (1994) Seasonal and geographical variation of terpenes, resin acids and total phenolics in nursery grown seedlings of Scots pine (Pinus sylvestris L.). New Phytol 128:703–713CrossRefGoogle Scholar
  27. Ottavioli J, Bighelli A, Casanova J (2008) Diterpene-rich needle oil of Pinus pinaster Ait. from Corsica. Flavour Fragr J 23:121–125CrossRefGoogle Scholar
  28. Pauly G, Gleizes M, Bernard-Dagan C (1973) Identification des constituants de l’essence des aiguilles de Pinus pinaster. Phytochem 12:1395–1398CrossRefGoogle Scholar
  29. Petrakis PV, Tsitsimpikou C, Tzakou O, Couladis M, Vagias C, Roussis V (2001) Neddles volatiles from five Pinus species growing in Greece. Flavour Fragr J 16:249–252CrossRefGoogle Scholar
  30. Pombeiro L, Tavares MR, Marcelo Curto MJ (1991) Agulhas de Pinus pinaster AIT de origem portuguesa: constituintes quimicos e sua variaçao sazonal. In: II Jornadas Ibericas de Plantas Medicinais, Aromáticas e Oleos Essenciais. Instituto Nacional de Engenharia e Tecnologia Industrial, Lisboa, pp 146–155Google Scholar
  31. Ramaswami SK, Briscese P, Gargiullo RJ, Von Geldem T (1986) Sesquiterpene hydrocarbons: from mass confusion to orderly line-up. In: Lawrence BM, Mookherjee BD, Willis BJ (eds) Flavors and fragances: a world perspective, WashingtonGoogle Scholar
  32. Schaefer PR, Hanover JW (1986) Taxonomic implications of monoterpene compounds of blue and Engelmann spruces. For Sci 32:725–734Google Scholar
  33. Song ZQ, Liu X, Liang ZQ (1993) Chemical composition of oleoresins from chinese pine species for gum rosin production. Nav Stores Rev 2:6–9Google Scholar
  34. Tiberi R, Niccoli A, Curini M, Epifano F, Marcotullio MC, Rosati O (1999) The role of the monoterpene composition in Pinus spp. needles, in host selection by the pine processionary caterpillar, Thaumetopoea pityocampa. Phytoparasit 27(4):263–272CrossRefGoogle Scholar
  35. Tobolski JJ, Zinkel DF (1982) Variation in needle and cortex resin acids during shoot development in Pinus sylvestris, P. nigra and P. strobus. Forest Sci 28:785–796Google Scholar
  36. Von Rudlolff E (1975) Volatile leaf analysis in chemosystematic studies of North American conifers. Biochem Syst Ecol 2:131–167CrossRefGoogle Scholar
  37. Walter J, Delmond B, Pauly G (1985) The resin acids of nedles and cortical tissues of maritime pines (Pinus pinaster Ait.) from Landes and Corsica. Occurrence of anticopalic acid in the needles from Corsican origin. CR Acad Sci Ser 3(301):539–542Google Scholar
  38. Wolff RL, Comps B, Marpeau AM, Deluc LG (1997) Taxonomy of Pinus species based on the seed oil fatty acid compositions. Trees Struct Funct 12:113–118Google Scholar
  39. Wolff RL, Comps B, Deluc LG, Marpeau AM (1998) Fatty acids of the seeds from pine species of Ponderosa-Banksiana and Halepensis sections. The peculiar taxonomic position of Pinus pinaster. J Am Oil Chem Soc 75:45–50CrossRefGoogle Scholar
  40. Wolff RL, Pedrono F, Marpeau AM (1999) Fatty acid composition of edible pine seeds with emphasis on North American and Mexican pines of the Cembroides subsection. Olea Corps Gras Lip 6:107–110Google Scholar
  41. Zinkel DF (1977) Pine resin acids as chemotaxonomic and genetic indicators. TAPPI Conf Papers, For Biol Wood Chem.Conf, Madison, pp 53–56Google Scholar
  42. Zinkel DF, Zank LC, Wesolowski MR (1971) Diterpene resin acids. USDA, Forest Service. Forest Products Laboratory. MadisonGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Carlos Arrabal
    • 1
  • María Concepción García-Vallejo
    • 2
  • Estrella Cadahia
    • 2
  • Manuel Cortijo
    • 1
  • Brigida Fernández de Simón
    • 2
  1. 1.Departamento de Ingeniería ForestalUniversidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de MontesMadridSpain
  2. 2.Departamento de Industrias ForestalesINIA-CIFORMadridSpain

Personalised recommendations