Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 2, pp 431–444 | Cite as

Molecular phylogeny and taxonomy of Tanacetum L. (Compositae, Anthemideae) inferred from nrDNA ITS and cpDNA trnH–psbA sequence variation

  • Ali Sonboli
  • Kathrin Stroka
  • Shahrokh Kazempour Osaloo
  • Christoph Oberprieler
Original Article

Abstract

The genus Tanacetum L. consists of around 160 species of the Compositae-Anthemideae. It holds a crucial position for understanding the phylogeny of the tribe and its subtribal and generic classification. The present study focuses on the phylogenetic relationships of the species and aims at a discussion of the infrageneric classification and boundaries of the genus. Sequence information from a nuclear [nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS)] and a chloroplast marker [chloroplast DNA (cpDNA) trnH–psbA] was used to infer the phylogeny of Tanacetum and many representatives of closely related genera. Bayesian inference methods were used for the phylogenetic reconstructions based on a combined dataset including both sequence and indel information. Contrasting the high morphological diversity in the genus, sequence divergence among Tanacetum representatives included was found to be very low, leading to unresolved phylogenetic relationships within the genus. Nevertheless, the generic separation of Tanacetum from other members of subtribe Anthemidinae (i.e., Anthemis, Archanthemis, Cota, Nananthea, and Tripleurospermum) emerges, while other, presently accepted genera are found nested in Tanacetum (i.e., Gonospermum, Lugoa, and Xylanthemum). Finally, the phylogenetic independence of the SW European T. microphyllum from the rest of Tanacetum and the other genera of Anthemidinae is found to receive strong support and is also backed by its morphological uniqueness. The new genus Vogtia Oberpr. et Sonboli is described to accommodate Tanacetum microphyllum and the closely related species T. annuum. The sinking of Gonospermum, Lugoa, and Xylanthemum into a broadly circumscribed genus Tanacetum is proposed until more stable phylogenetic reconstructions based on more and more variable molecular markers are possible. Concerning the infrageneric classification of Tanacetum, the phylogeny does not support the separation of the white- and red-rayed species (the former genus Pyrethrum) from the discoid, disciform, or yellow-rayed ones (i.e., Tanacetum in the strict sense) at any infrageneric rank. The hypothesis by Tzvelev (1961) that the yellow-rayed representatives may have evolved from disciform ancestors receives little support.

Keywords

Asteraceae Anthemideae cpDNA nrDNA Phylogeny Tanacetum Taxonomy Vogtia 

Notes

Acknowledgments

The authors gratefully acknowledge the curators of herbaria B, G, IRAN, M, MSB, MPH, S, TARI, and W for providing leaf material for DNA analysis. We would like to express our thanks to Dr. R. M. Lo Presti (Regensburg) for permission to include a number of cpDNA sequences of Anthemis and Cota in this study. Some of the nrDNA sequences were also established during a student training course by Birgit Blaul (Regensburg). Laboratory technical assistance of Miss K. Naderi (Teheran) and Mr. P. Hummel (Regensburg) and nomenclatural advice of Prof. Dr. W. Greuter (Berlin) is highly appreciated. This research was partly supported by the German Academic Exchange Service (DAAD) and the Shahid Beheshti University Research Council to A.S. and by the SYNTHESYS project of the EU to C.O. (SE-TAF-1084, AT-TAF-1731).

References

  1. Ahlstrand L (1978) Embryology of Ursinia (Compositae). Bot Not 131:487–496Google Scholar
  2. Bergh NG, Linder HP (2009) Cape diversification and repeated out-of-southern-Africa dispersal in paper daisies (Asteraceae–Gnaphalieae). Molec Phylog Evol 51:5–18CrossRefGoogle Scholar
  3. Bremer K, Humphries CJ (1993) Generic monograph of the Asteraceae–Anthemideae. Bull Nat Hist Mus Lond Bot 23:71–177Google Scholar
  4. De Candolle AP (1838) Prodromus systematis naturalis regni vegetabilis, pars VI. Treuttel et Würtz, ParisGoogle Scholar
  5. Douzery EJP, Pridgeon AM, Kores P, Linder HP, Kurzweil H, Chase MW (1999) Molecular phylogenetics of Diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Am J Bot 86:887–899PubMedCrossRefGoogle Scholar
  6. Downie SR, Katz-Downie DS (1996) A molecular phylogeny of Apiaceae subfamily Apioideae: evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Am J Bot 83:234–251CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Febles R (2008) Re-estructuración del género Gonospermum Less. (Asteraceae: Anthemideae) en las Islas Canarias. Bot Macaronésica 27:101–105Google Scholar
  9. Francisco-Ortega J, Barber JC, Santos-Guerra A, Febles-Hernández R, Jansen RK (2001) Origin and evolution of the endemic genera of Gonosperminae (Asteraceae: Anthemideae) from the Canary Islands: Evidence from nucleotide sequences of the internal transcribed spacers of the nuclear ribosomal DNA. Am J Bot 88:161–169PubMedCrossRefGoogle Scholar
  10. Gemeinholzer B, Oberprieler C, Bachmann K (2006) Screening the applicability of molecular markers for plant identification using the NCBI and EBI nucleotide databases and Asteraceae species belonging to the tribes Lactuceae and Anthemideae. Taxon 55:173–187Google Scholar
  11. Grau J (1980) Die Testa der Mutisieae und ihre systematische Bedeutung. Mitt Bot Staatssamml München 16:269–332Google Scholar
  12. Grierson AJC (1975) Tanacetum. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 5. Edinburgh University Press, Edinburgh, pp 256–292Google Scholar
  13. Guo YP, Ehrendorfer F, Samuel R (2004) Phylogeny and systematic of Achillea (Asteraceae–Anthemideae) inferred from nrNRDNA ITS and plastid trnL-F DNA sequences. Taxon 53:657–672CrossRefGoogle Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  15. Harling G (1950) Embryological studies in the Compositae. Part I. Anthemideae-Anthemidinae. Acta Horti Bergiani 15:135–168Google Scholar
  16. Harling G (1951) Embryological studies in the Compositae. Part II. Anthemideae–Chrysantheminae. Acta Horti Bergiani 16:1–56Google Scholar
  17. Harling G (1960) Further embryological and taxonomical studies in Anthemis L. and some related genera. Svensk Botanisk Tidskrift 54:572–590Google Scholar
  18. Himmelreich S, Källersjö M, Eldenäs P, Oberprieler C (2008) Phylogeny of southern hemisphere Compositae–Anthemideae based on nrDNA and cpDNA ndhF sequences information. Plant Syst Evol 272:131–153CrossRefGoogle Scholar
  19. Kornkven AB, Watson LE, Estes JR (1998) Phylogenetic analysis of Artemisia section Tridentatae (Asteraceae) based on sequences from the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Am J Bot 86:1787–1795CrossRefGoogle Scholar
  20. Kornkven AB, Watson LE, Estes JR (1999) Molecular phylogeny of Artemisia section Tridentatae (Asteraceae) based on chloroplast DNA restriction site variation. Syst Bot 24:69–84CrossRefGoogle Scholar
  21. Lessing CF (1832) Synopsis generum Compositarum, BerlinGoogle Scholar
  22. Lo Presti RM, Oppolzer S, Oberprieler C (2010) A molecular phylogeny and a revised classification of the Mediterranean genus Anthemis s.l. (Compositae, Anthemideae) based on three molecular markers and micromorphological characters. Taxon 59:1441–1456Google Scholar
  23. Lo Presti RM, Oberprieler C (2009) Evolutionary history, biogeography and eco-climatological differentiation of the genus Anthemis L. (Compositae, Anthemideae) in the circum-Mediterranean area. J Biogeogr 36:1313–1332CrossRefGoogle Scholar
  24. Martinoli G (1940) Contributo all’embriologia delle Asteraceae: IV–V. Nuovo Giornale Botanico Italiano 2(47):287–322CrossRefGoogle Scholar
  25. Masuda Y, Yukawa T, Kondo K (2009) Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe Anthemideae, the Asteraceae in East Asian on the basis of the internal transcribed spacer (ITS) region and external transcribed spacer (ETS) region of nr DNA. Chromosome Bot 4:25–36CrossRefGoogle Scholar
  26. McNeill J, Barrie FR, Burdet HM, Demoulin V, Hawksworth DL, Marhold K, Nicolson DH, Prado J, Silva PC, Skog JE, Wiersema JH, Turland NJ (eds) (2006) International code of botanical nomenclature (Vienna Code): Adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. Regnum Vegetabile 146. Gantner, RuggellGoogle Scholar
  27. Mitsuoka S, Ehrendorfer F (1972) Cytogenetics and evolution of Matricaria and related genera (Asteraceae–Anthemideae). Österreichische Botanische Zeitschrift 120:155–200CrossRefGoogle Scholar
  28. Necker NMJ (1790) Elementa Botanica Genera Genuina. 1:89Google Scholar
  29. Oberprieler C (2001) Phylogenetic relationships in Anthemis L. (Compositae, Anthemideae) based on nrDNA ITS sequence variation. Taxon 50:745–762CrossRefGoogle Scholar
  30. Oberprieler C (2004a) On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae–Anthemideae I. Brocchia, Endopappus and Heliocauta. Willdenowia 34:39–57CrossRefGoogle Scholar
  31. Oberprieler C (2004b) On the taxonomic status and the phylogenetic relationships of some unispecific Mediterranean genera of Compositae–Anthemideae II. Daveaua, Leucocyclus and Nananthea. Willdenowia 34:341–350CrossRefGoogle Scholar
  32. Oberprieler C, Vogt R (2000) The position of Castrilanthemum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. Plant Syst Evol 225:145–170Google Scholar
  33. Oberprieler C, Vogt R, Watson LE (2006) XVI. Tribe Anthemideae Cass. In: Kadereit JW, Jeffrey C (eds) The families and genera of vascular plants, flowering plants, Eudicots, Asterales, vol VIII. Springer, Berlin, pp 342–374Google Scholar
  34. Oberprieler C, Himmelreich S, Vogt R (2007) A new subtribal classification of the tribe Anthemideae (Compositae). Willdenowia 37:89–114CrossRefGoogle Scholar
  35. Oberprieler C, Himmelreich S, Källersjö M, Vallès J, Vogt R (2009) Anthemideae. In: Funk V, Susanna A, Stuessy TF, Bayer R (eds) Systematics evolution and biogeography of the Compositae. IAPT, Vienna, pp 631–666Google Scholar
  36. Podlech D (1986) Tanacetum. In: Rechinger KH, Gruck V (eds) Flora Iranica, vol 158. Akademische Druck- und Verlagsanstalt Graz, Austria, pp 88–148Google Scholar
  37. Rambaut A, Drummond AJ (2003) Tracer v1.3. MCMC Trace File Analyser. University of Oxford. http://evolve.zoo.ox.ac.uk/beast/
  38. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  39. Ronquist F, Huelsenbeck JP, Van der Mark P (2005) MrBayes 3.1 Manual. http://mrbayes.csit.fsu.edu/wiki/index.php/manual
  40. Sanz M, Vilatersana R, Hidalgo O, Garcia-Jacas N, Susanna A, Schneeweiss GM, Vallès J (2008) Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57:66–78Google Scholar
  41. Schultz Bipontinus CH (1844) Über die Tanaceteen. Neustadt an der HaardtGoogle Scholar
  42. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  43. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  44. Sonboli A, Oberprieler C (2010) Phylogenetic relationship and taxonomic position of Xylanthemum tianschanicum (Krasch.) Muradyan (Compositae, Anthemideae) as inferred from nrDNA ITS data. Biochem Syst Ecol 38:702–707CrossRefGoogle Scholar
  45. Sonboli A, Kazempour Osaloo S, Riahi H, Mozaffarian V (2010) Tanacetum joharchii sp. nov. (Asteraceae–Anthemideae) from Iran, and its taxonomic position based on molecular data. Nord J Bot 28:74–78CrossRefGoogle Scholar
  46. Sonboli A, Kazempour Osaloo S, Vallèr J, Oberprieler C (2011) Systematic status and phylogenetic relationships of the enigmatic Tanacetum paradoxum Bornm (Asteraceae, Anthemideae): evidences from nrDNA ITS, micromorphological, and cytological data. Plant Syst Evol 292:85–93CrossRefGoogle Scholar
  47. Spach E (1841) Histoire naturelle des végétaux Phanérogames, ParisGoogle Scholar
  48. Thiers B (2008) Index herbariorum: a global directory of public herbaria and associated staff. http://sweetgum.nybg.org/ih/
  49. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  50. Torrell M, Garcia-Jacas N, Susanna A, Vallès J (1999) Phylogeny in Artemisia (Asteraceae, Anthemideae) inferred from nuclear ribosomal DNA (ITS) sequences. Taxon 48:721–736CrossRefGoogle Scholar
  51. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (1976) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 23–35Google Scholar
  52. Tzvelev NN (1961) Pyrethrum, Xylanthemum, Tanacetum, Ajania. In: Shiskin BK, Bobrov EG (eds) Flora USSR, vol 26. Bishen Singh Mahendra Pal Singh: Koeltz Science Books, pp 213–302, 327–332, 367–418, 458–473Google Scholar
  53. Vallès J, Torrell M, Garnatje T, Garcia-Jacas S, Vilatersana R, Susanna A (2003) The genus Artemisia and its allies: phylogeny of the subtribe Artemisiinae (Asteraceae, Anthemideae) based on nucleotide sequences of nuclear ribosomal DNA internal transcribed spacers (ITS). Plant Biol 5:274–284CrossRefGoogle Scholar
  54. Watson LE, Bates PL, Evans TM, Unwin MM, Estes JR (2002) Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol Biol 2:17–29PubMedCrossRefGoogle Scholar
  55. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322Google Scholar
  56. Young ND, Healy J (2003) GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics 4:6PubMedCrossRefGoogle Scholar
  57. Zhao H, Chen F, Chen S, Wu G, Guo W (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trnL-F IGS sequences. Plant Syst Evol 284:153–169CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Biology, Medicinal Plants and Drugs Research InstituteShahid Beheshti UniversityTehranIran
  2. 2.Department of Plant Sciences, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  3. 3.Institute of BotanyUniversity of RegensburgRegensburgGermany

Personalised recommendations