Plant Systematics and Evolution

, Volume 298, Issue 2, pp 337–349 | Cite as

Molecular phylogeny of relict-endemic Liquidambar orientalis Mill based on sequence diversity of the chloroplast-encoded matK gene

  • Aslı Ozdilek
  • Burcu Cengel
  • Gaye Kandemir
  • Yasemin Tayanc
  • Ercan Velioglu
  • Zeki KayaEmail author
Original Article


The genetic diversity and evolutionary divergence in Liquidambar species and Liquidambar orientalis varieties were compared with respect to the matK gene. A total of 66 genotypes from 18 different populations were sampled in southwestern Turkey. The matK region, which is about 1,512 bp in length, was sequenced and studied. L. orientalis, L. styraciflua, and L. formosana had similar magnitude of nucleotide diversity, while L. styraciflua and L. acalycina possessed higher evolutionary divergence. The highest evolutionary divergence was found between L. styraciflua and eastern Asian Liquidambar species (0.0102). However, the evolutionary divergence between L. orientalis and other species was of a similar magnitude. The maximum-parsimony phylogenetic tree showed that L. styraciflua and L. orientalis formed a closer clade while East Asian species were in a separate clade. This suggests that the North Atlantic Land Bridge through southern Greenland may have facilitated continuous distribution of Liquidambar species from southeastern Europe to eastern North America in early Tertiary period. The maximum-parsimony tree with only 18 Oriental sweetgum populations indicated that there were two main clusters: one with mainly L. orientalis var. integriloba and the other with var. orientalis and undetermined populations. High nucleotide diversity (0.0028) and divergence (0.00072) were found in L. orientalis var. integriloba populations and Muğla-1 geographical region. This region could be considered as the major refugium and genetic diversity center for the species. The low genetic diversity and divergence at intraspecies level suggest that L. orientalis populations in Turkey share an ancestral polymorphism from which two varieties may have evolved.


Liquidambar species Liquidambar orientalis matEvolutionary divergence Nucleotide diversity Molecular phylogeny North Atlantic Land Bridge 



This study has been funded by the Scientific and Technological Council of Turkey (project number TOVAG-104O154).


  1. Alan M, Kaya Z (2003) EUFORGEN Technical Guidelines for genetic conservation and use for oriental sweetgum (Liquidambar orientalis). Plant Genetic Resources Institute, Rome, Italy, p 6 Google Scholar
  2. Beatty GE, Provan J (2010) Refugial persistence and postglacial recolonization of North America by the cold tolerant herbaceous plant Orthilia secunda. Mol Ecol 19:5009–5021PubMedCrossRefGoogle Scholar
  3. Bogle AL (1986) The floral morphology and vascular anatomy of the Hamamelidaceae: subfamily Liquidambaroideae. Ann Mo Bot Gard 73:325–347CrossRefGoogle Scholar
  4. Cesarone C, Bolognesi C, Santi L (1979) Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem 100:188–197PubMedCrossRefGoogle Scholar
  5. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les HD, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SCH, Dayanandan S, Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80:526–580CrossRefGoogle Scholar
  6. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  7. Efe A (1987) Liquidambar orientalis Mill. (Sığla ağacı)’ın morfolojik ve palinolojik özellikleri üzerine araştırmalar [Morphological and palynological researches on Liquidambar orientalis Mill.]. İ.Ü. Orman Fakültesi Dergisi Seri A Cilt: 37, Sayı:2, 273-286, İstanbulGoogle Scholar
  8. Gadek PA, Wilson PG, Qinn CJ (1996) Phylogenetic reconstruction in Myrtaceae using matK, with particular reference to the position of Psiloxylon and Heteropyxis. Aust Syst Bot 9:283–290CrossRefGoogle Scholar
  9. Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23(2):380–391PubMedCrossRefGoogle Scholar
  10. Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839PubMedCrossRefGoogle Scholar
  11. Hoey MT, Parks CR (1991) Isozyme divergence between eastern Asian, north American, and Turkish species of Liquidambar (Hamamelidaceae). Am J Bot 78(7):938–947CrossRefGoogle Scholar
  12. Hoey MT, Parks CR (1994) Genetic divergence in Liquidambar styraciflua, L. formosona, and L. acalcycina (Hamamelidaceae). Syst Bot 19(2):308–316CrossRefGoogle Scholar
  13. Hristova V, Ivanov D (2009) Palynological data of the fossil flora from Sofia neogene basin (southwest Bulgaria)-Preliminary results. C R Acad Bulg Sci 62(3):379–384Google Scholar
  14. Ichert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Mol Phylogenet Evol 39(2006):512–528CrossRefGoogle Scholar
  15. Jarrel DC, Clegg MT (1995) Systematic implications of the chloroplast-encoded matK gene on the tribe Vandeae (Orchidaceae). Am J Bot 82:137Google Scholar
  16. Jiao Z, Li J (2009) Phylogenetics and biogeography of eastern Asian-North American disjunct genus Pachysandra (Buxaceae) inferred from nucleotide sequences. J Syst Evol 47(3):191–201Google Scholar
  17. Joannin S, Quillévéré F, Suc JP, Lécuyer C, Martineau F (2007) Early Pleistocene climate changes in the central Mediterranean region as inferred from integrated pollen and planktonic foraminiferal stable isotope analyses. Quaternary Res 67:264–274CrossRefGoogle Scholar
  18. Johnson LA, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156CrossRefGoogle Scholar
  19. Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Mo Bot Gard 82:149–175CrossRefGoogle Scholar
  20. Johnson LA, Schultz JL, Soltis DE, Soltis PS (1996) Monophyly and generic relationships of Polemoniaceae based on matK sequences. Am J Bot 83:1207–1224CrossRefGoogle Scholar
  21. Kasapligil B (1976) Late tertiary cone bearing-green leaved forests around Guvem Village Near Kizilcahamam. M.T.A. Report, Ankara, TurkeyGoogle Scholar
  22. Kaya Z, Raynal DJ (2001) Biodiversity and conservation of Turkish forests. Biol Conserv 97(2):131–141CrossRefGoogle Scholar
  23. Kaya Z, Kandemir G, Çengel B, İçgen Y, Velioğlu E, Özdilek A, Or M (2008) Determination of genetic structure of Anatolian sweetgum (Liquidambar orientalis Miller) at the population and taxonomic levels based on molecular markers and Development of In Situ Conservation Strategies. The Scientific and Technical Research Council of Turkey, Agriculture, Forestry and Veterinary Research Grant Committee, Project Final Report TOVAG -104O156, p 45Google Scholar
  24. Kelchner SA (2002) Group II introns as phylogenetic tools: Structure, function, and evolutionary constraints. Am J Bot 89(10):1651–1669PubMedCrossRefGoogle Scholar
  25. Ledig FT (1998) Genetic diversity in tree species: with special reference to conservation in Turkey and the eastern Mediterranean. In: Zencirci N, Kaya Z, Anikster, Y and Adams WT (eds) The proc. of international symposium on in situ conservation of plant genetic diversity, Central research institute for field crops, Ankara, Turkey, 231–248Google Scholar
  26. Li J, Donoghue MJ (1999) More molecular evidence for interspecific relationships in Liquidambar (Hamamelidaceae). Rhodora 101:87–91Google Scholar
  27. Li JH, Bogle AL, Klein AS (1997) Interspecific relationships and genetic divergence of the disjunct genus Liquidambar (Hamamelidaceae). Rhodora 99:229–241Google Scholar
  28. Liang H, Hilu KW (1996) Application of the matK gene sequences to grass systematics. Can J Bot 74:125–134CrossRefGoogle Scholar
  29. Manchester SR (1999) Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86:472–522CrossRefGoogle Scholar
  30. Milne RI (2004) Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a Tertiary relict distribution. Mol Phylogenet Evol 33:389–401PubMedCrossRefGoogle Scholar
  31. Morris AB, Ickert-Bond SM, Brunson DB, Soltis DE, Soltis PS (2008) Phylogeographical structure and temporal complexity in American Sweetgum (Liquidambar styraciflua; Altingiaceae). Mol Ecol 17:3889–3900PubMedCrossRefGoogle Scholar
  32. Mort ME, Soltis DE, Soltis PS, Francisco-Ortega J, Santos-Guerra A (2001) Phylogenetic relationships and evolution of Crassulaceae inferred from matK sequence data. Am J Bot 88:76–91PubMedCrossRefGoogle Scholar
  33. Neuhaus H, Link G (1987) The chloroplast tRNA lys (UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide. Curr Genet 11:251–257PubMedCrossRefGoogle Scholar
  34. Patterson J, Chamberlain B, Thayer D (2004–2006) Finch TV Version 1.4.0.
  35. Pesmen H (1972) The Genus Liquidambar L. In: Davis(ed) Flora of Turkey, vol 4 Edinburgh, pp 264–265 Google Scholar
  36. Pigg KB, Ickert-Bond SM, Wen J (2004) Anatomically preserved Liquidambar (Altingiaceae) from the middle Miocene of Yakima Canyon, Washington state, USA, and its biogeographic implications. Am J Bot 91:499–509PubMedCrossRefGoogle Scholar
  37. Plunkett GM, Soltis DE, Soltis PS (1996) Evolutionary pattern in Apiaceae: inferences based on matK sequence data. Syst Bot 21:477–495CrossRefGoogle Scholar
  38. Sadori L, Giardini M, Chiarini E, Mattei M, Papasodaro F, Porreca M (2010) Pollen and macrofossil analyses of Pliocene lacustrine sediments (Salto river valley, Central Italy). Quatern Int 225:44–57CrossRefGoogle Scholar
  39. Sakala J, Prive-Gill C (2004) Oligocene angiosperm woods from northwestern Bohemia, Czech Republic. Iawa J 25(3):369–380Google Scholar
  40. Schmickl R, Jorgensen MH, Brysting AK, Koch MA (2010) The evolutionary history of the Arabidobsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 10:98PubMedCrossRefGoogle Scholar
  41. Shi S, Huang Y, Zhong Y, Du Y, Zhang Q, Chang H, Boufford DE (2001) Phylogeny of the Altingiaceae based on cpDNA matK PY-IGS and nrDNA ITS sequences. Plant Syst Evol 230:13–24CrossRefGoogle Scholar
  42. Steele KP, Vilgalys R (1994) Phylogenetic analyses of Polemoniaceae using nucleotide sequences of the Plastid gene matK. Syst Bot 19:126–142CrossRefGoogle Scholar
  43. Swofford DL (2003) PAUP: phylogenetic analysis using parsimony and other method. Version 4.0b10. Sinauer Associates, Sunderland, MA, USAGoogle Scholar
  44. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 5.0: Molecular Evolutionary Genetics Analysis (MEGA) software version 5.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  45. Tanaka N, Setoguchi H, Murata J (1997) Phylogeny of the family Hydrocharitaceae inferred from rbcL and matK gene sequence data. J Plant Res 110:329–337CrossRefGoogle Scholar
  46. Thompson JD, Plewniak F, Poch O (1999) A comprehensive comparison of multiple sequence alignment programs. Nucleic Acids Res 27:2682–2690PubMedCrossRefGoogle Scholar
  47. Tiffney BH (1985) The Eocene of North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the northern hemisphere. J Arnold Arbor 66:24373Google Scholar
  48. Tiffney BH (2000) Geographic and climatic influence on the Creataceous and Tertiary history of Euroamerican floristic similarity. Acta Univ Carol Geol 44:5–16Google Scholar
  49. Wen J (1999) Evolution of eastern Asian and eastern North American disjunct distributions in flowering plants. Annu Rev Ecol Syst 30:421–455CrossRefGoogle Scholar
  50. Williams JW, Shuman BN, Webb T, Bartlein PJ, Leduc PL (2004) Late-quaternary vegetation dynamics in North America: scaling from taxa to biomes. Ecol Monogr 74:309–334CrossRefGoogle Scholar
  51. Wolfe JA (1985) Distribution of major vegetation types during the Tertiary. In ET Sundquist and WS Broecker (eds) The carbon cycle and atmospheric CO2: natural variations and Archean to Present, vol 32 American Geophysical Union, Washington, pp 357–375 Google Scholar
  52. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. P Natl Acad Sci USA 89:10648–10652CrossRefGoogle Scholar
  53. Worobic E, Gedl P (2010) Spore-pollen and phytoplankton analysis of the upper Miocene deposits from Jefina (Krakow-Silesia Upland, Poland). Geol Q 54(1):41–53Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Aslı Ozdilek
    • 1
  • Burcu Cengel
    • 2
  • Gaye Kandemir
    • 2
  • Yasemin Tayanc
    • 2
  • Ercan Velioglu
    • 2
  • Zeki Kaya
    • 1
    Email author
  1. 1.Department of Biological SciencesMiddle East Technical UniversityAnkaraTurkey
  2. 2.Forest Tree Seeds and Tree Breeding Research Directorate, Ministry of Environment and ForestryGazi-AnkaraTurkey

Personalised recommendations