Advertisement

Genetic and morphological variability in Cattleya elongata Barb. Rodr. (Orchidaceae), endemic to the campo rupestre vegetation in northeastern Brazil

  • Daiane Trabuco da Cruz
  • Alessandra Selbach-Schnadelbach
  • Sabrina Mota Lambert
  • Patrícia Luz Ribeiro
  • Eduardo Leite Borba
Original Article

Abstract

Cattleya elongata is a rupicolous orchid species spread throughout and endemic to outcrop islands in campo rupestre vegetation of the Chapada Diamantina, northeastern Brazil. We scored nine natural populations of C. elongata for morphological and genetic variability, covering the whole distribution area of the species, using allozymes and ISSR markers and morphometric multivariate analyses. Genetic variability in allozimes was relatively high (H e = 0.12–0.25), and unexpectedly higher than the values based on ISSR (H e = 0.16–0.19). The populations present moderate structuring (allozymes, ΦPT = 0.14; ISSR, ΦPT = 0.18) and low inbreeding (allozymes, F IS = 0.06). Genetic similarity among the populations was high in both markers, in spite of the discontinuity of the outcrops of the Chapada Diamantina. We found no particular biogeographical pattern to the distribution of the genetic and morphologic similarity among the populations of C. elongata. We found high morphological variability with moderate differentiation among the populations. We did not find any correlation among genetic, morphological, and geographical distances, and among the variability found in the morphological and genetic markers. The differences observed between the two genetic markers and the various morphological markers examined here indicated that the isolated use of any single parameter of these different populations for conservation planning or management would not consider all of the variability to be found in the species, as found in other Brazilian campos rupestres plants.

Keywords

Allozymes Camporupestre Endemism ISSR Morphometrics 

Notes

Acknowledgments

We thank Ricardo Villas Boas Gomes for technical support. This work was supported by a grant from the Fundação de Apoio à Pesquisa do Estado da Bahia (FAPESB), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Programa de Pesquisa em Biodiversidade do Semi-Árido (PPBio). D.T.C. received a scholarship from CNPq. E.L.B. is supported by a productivity grant (PQ2) from CNPq.

References

  1. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New YorkGoogle Scholar
  2. Azevedo MTA, Borba EL, Semir J, Solferini VN (2007) High genetic variability in Neotropical myophilous orchids. Bot J Linn Soc 153:33–40CrossRefGoogle Scholar
  3. Borba EL, Felix JM, Solferini VN, Semir J (2001) Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Am J Bot 88:419–428PubMedCrossRefGoogle Scholar
  4. Borba EL, Shepherd GJ, van den Berg C, Semir J (2002) Floral and vegetative morphometrics in five Pleurothallis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann Bot 90:219–230PubMedCrossRefGoogle Scholar
  5. Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007a) Demography, genetic and morphological variability of the endangered Sophronitis sincorana (Orchidaceae) in the Chapada Diamantina, Brazil. Plant Syst Evol 267:129–146CrossRefGoogle Scholar
  6. Borba EL, Funch RR, Ribeiro PL, Smidt EC, Silva-Pereira V (2007b) Demografia, variabilidade genética e morfológica e conservação de Cattleya tenuis (Orchidaceae), espécie ameaçada de extinção da Chapada Diamantina. Sitientibus Sér Ciênc Biol 7:211–222Google Scholar
  7. Brody JR, Kern SE (2004) Sodium boric acid: a tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 36:2–4Google Scholar
  8. Brune W, Alfenas AC, Junghans TG (1998) Identificações específicas de enzimas em géis. In: Alfenas AC (ed) Eletroforese de isoenzimas e proteinas afins: fundamentos e aplicações em plantas e microorganismos. Editora Universidade Federal de Viçosa, Viçosa, pp 201–328Google Scholar
  9. Case MA, Mlodozeniec HT, Wallace LE, Weldy TW (1998) Conservation genetics and taxonomic status of the rare Kentucky lady’s slipper: Cypripedium kentuckiense (Orchidaceae). Am J Bot 89:843–853Google Scholar
  10. Chung MY, Chung MG (1999) Allozyme diversity and population structure in Korean population of Cymbidium goeringii (Orchidaceae). J Plant Res 112:139–144CrossRefGoogle Scholar
  11. Chung MY, Nason JD, Chung MG (2004) Spatial genetic structure in populations of the terrestrial orchid Cephalanthera longibracteata (Orchidaceae). Am J Bot 91:52–57CrossRefGoogle Scholar
  12. Collevatti RG, Rabelo SG, Vieira RF (2009) Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species. Ann Bot 104:655–664PubMedCrossRefGoogle Scholar
  13. Conceição AS, Queiroz LP, Lambert SM, Pereira ACS, Borba EL (2008) Biosystematics of Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae) based on allozyme and morphometric analyses. Plant Syst Evol 270:183–207CrossRefGoogle Scholar
  14. Corrias B, Rossi W, Arduino P, Cianchi R, Bullini L (1991) Orchis longicornu Poiret in Sardinina: genetic, morphological and chorological data. Webbia 45:71–101Google Scholar
  15. Cruz DT, Borba EL, van den Berg C (2003) O gênero Cattleya Lindl. (Orchidaceae) no estado da Bahia, Brasil. Sitientibus Sér Ciênc Biol 3:26–34Google Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid isolation procedure for small quantities of fresh tissue. Phytochem Bull 19:11–15Google Scholar
  17. Elisens WJ, Boyd RD, Wolfe AD (1992) Genetic and morphological divergence among varieties of Aphanostephus skirrhobasis (Asteraceae-Asterae) and related species with different chromosome numbers. Syst Bot 17:380–394CrossRefGoogle Scholar
  18. Feres F, Zucchi MI, Souza AP, Amaral MCE, Bittrich V (2009) Phylogeographic studies of Brazilian “campo-rupestre” species: Wunderlichia mirabilis Riedel ex Baker (Asteraceae). Biotemas 22:17–26Google Scholar
  19. Gilles BE (1984) A comparison between quantitative and biochemical variation in the wild barley Hordeum murinum. Evolution 38:34–41CrossRefGoogle Scholar
  20. Giulietti AM, Pirani JR (1988) Patterns of geographic distribution of some plant species from the Espinhaço Range, Minas Gerais and Bahia, Brazil. In: Vanzolini PE, Heyer WR (eds) Proceedings of a workshop on neotropical distribution patterns. Academia Brasileira de Ciências, Rio de Janeiro, pp 36–69Google Scholar
  21. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço Range, eastern Brazil. In: Davis SD, Heywood VH, Herrera-Macbyde O, Villa-Lobos J, Hamilton AC (eds) In centres of plant diversity. A guide and strategy for their conservation, v.3. The Americas IUCN Publication Unity, Cambridge, pp 397–404Google Scholar
  22. Goldman DH, van den Berg C, Griffith MP (2004) Morphometric circumscription of species and infraspecific taxa in Calopogon R.Br. (Orchidaceae). Plant Syst Evol 247:37–60CrossRefGoogle Scholar
  23. Gustafsson S (2000) Patterns of genetic variation in Gymnadenia conopsea, the fragrant orchid. Mol Ecol 9:1863–1872PubMedCrossRefGoogle Scholar
  24. Hamrick JL (1989) Isozymes and the analysis of genetic structure in plant population. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 87–105Google Scholar
  25. Hamrick JL, Godt MJW (1990) Allozyme diversity in plant species. In: Brown ADH, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding and genetic resources. Sinauer, Sunderland, pp 43–63Google Scholar
  26. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc London B 351:1291–1298CrossRefGoogle Scholar
  27. Jesus FF, Solferini VN, Semir J, Prado PI (2001) Local genetic differentiation in Proteopsis argentea (Asteraceae), a perennial herb endemic in Brazil. Plant Syst Evol 226:59–68CrossRefGoogle Scholar
  28. Jesus FF, Abreu AG, Semir J, Solferini VN (2009) Low genetic diversity but local genetic differentiation in endemic Minasia (Asteraceae) species from Brazil. Plant Syst Evol 277:187–196CrossRefGoogle Scholar
  29. Lage-Novaes RM, Lemos-Filho JP, Ribeiro RA, Lovato MB (2010) Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in eastern Tropical South America. Mol Ecol 19:985–998CrossRefGoogle Scholar
  30. Lambert SM, Borba EL, Machado MC, Andrade SCS (2006a) Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantina, north-eastern Brazil. Ann Bot 97:389–403PubMedCrossRefGoogle Scholar
  31. Lambert SM, Borba EL, Machado MC (2006b) Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of Melocactus × albicephalus (Melocactus ernestii × M. glaucescens) in north-eastern Brazil. Plant Species Biol 21:93–108CrossRefGoogle Scholar
  32. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95CrossRefGoogle Scholar
  33. Mccune B, Mefford MJ (1999) PC-Ord—multivariate analysis of ecological data, version 4.10. MjM Software, Gleneder BeachGoogle Scholar
  34. Mitton JB (1978) Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273:661–662PubMedCrossRefGoogle Scholar
  35. National Geodetic Survey (2002) INVERSE version 2.0. http://ngs.noaa.gov/. 18 April 2006
  36. Nei M (1978) Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  37. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155PubMedCrossRefGoogle Scholar
  38. Palma-Silva C, Lexer C, Paggi GM, Barbará T, Bered F, Bodanese-Zanettini MH (2009) Range-wide patterns of nuclear and chloroplast DNA diversity in Vriesea gigantea (Bromeliaceae), a neotropical forest species. Heredity 103:503–512PubMedCrossRefGoogle Scholar
  39. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  40. Pereira ACS, Borba EL, Giulietii AM (2007) Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae), from the Chapada Diamantina, Brazil: implications for conservation and taxonomy. Bot J Linn Soc 153:401–416CrossRefGoogle Scholar
  41. Prance GT (1982) Forest refuges: evidence from wood angiosperms. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 137–158Google Scholar
  42. Ramos ACS, Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of quaternary climate changes in the Brazilian cerrado. Ann Bot 100:1219–1228PubMedCrossRefGoogle Scholar
  43. Raymond M, Rousset F (1995) GENEPOP (version 1–2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  44. Ribeiro PL, Borba EL, Smidt EC, Lambert SM, Schnadelbach AS, van den Berg C (2008) Genetic and morphological variation in the Bulbophyllum exaltatum (Orchidaceae) complex occurring in the Brazilian campos rupestres: implications for taxonomy and biogeography. Plant Syst Evol 270:109–137CrossRefGoogle Scholar
  45. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  46. Salgado-Labouriau ML, Barberi M, Ferraz-Vicentini KR, Parizzi MG (1998) A dry climatic event during the late quaternary of tropical Brazil. Rev Paleobot Palynol 99:115–129CrossRefGoogle Scholar
  47. Smidt EC, Silva-Pereira V, Borba EL (2006) Reproductive biology of two Cattleya (Orchidaceae) species endemic to north-eastern Brazil. Plant Species Biol 21:85–91CrossRefGoogle Scholar
  48. Smith JL, Hunter KL, Hunter RB (2002) Genetic variation in the terrestrial orchid Tipularia discolour. South Nat 1:17–26CrossRefGoogle Scholar
  49. Soltis DE, Haufler CH, Darrow DC, Gastony GJ (1983) Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedule. Am Fern J 73:9–27CrossRefGoogle Scholar
  50. StatSoft Inc. (2003) STATISTICA (data analysis software system), version 6. StatSoft Inc., TulsaGoogle Scholar
  51. Trapnell DW, Hamrick JL (2004) Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13:2655–2666PubMedCrossRefGoogle Scholar
  52. Trapnell DW, Hamrick JL, Nason JD (2004) Three-dimensional fine-scale structure of the neotropical epiphytic orchid, Laelia rubescens. Mol Ecol 13:1111–1118PubMedCrossRefGoogle Scholar
  53. Tremblay RL, Ackerman JD (2001) Gene flow and effective population size in Lepanthes (Orchidaceae): a case for genetic drift. Biol J Linn Soc 72:47–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Daiane Trabuco da Cruz
    • 1
  • Alessandra Selbach-Schnadelbach
    • 2
  • Sabrina Mota Lambert
    • 3
  • Patrícia Luz Ribeiro
    • 1
  • Eduardo Leite Borba
    • 4
  1. 1.Laboratório de Sistemática Molecular de Plantas, Departamento de Ciências BiológicasUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  2. 2.Departamento de Biologia Geral, Instituto de BiologiaUniversidade Federal da BahiaSalvadorBrazil
  3. 3.Laboratório de Infectologia Veterinária, Escola de Medicina VeterináriaUniversidade Federal da BahiaSalvadorBrazil
  4. 4.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSão PauloBrazil

Personalised recommendations