Towards a phylogeny for Astragalus section Caprini (Fabaceae) and its allies based on nuclear and plastid DNA sequences

  • Mehrshid Riahi
  • Shahin ZarreEmail author
  • Ali Aasghar Maassoumi
  • Shahrokh Kazempour Osaloo
  • Martin F. Wojciechowski
Original Article


We conducted phylogenetic analyses of the sect. Caprini and its closely related sections within Astragalus. Analyses of a combined dataset including nrDNA ETS and three cpDNA markers using maximum parsimony and Bayesian inference from 44 species of sect. Caprini and its allied taxa yielded congruent relationships among several major lineages. These results largely disagree with previously recognized taxonomic groups, most notably in the following ways: (1) subsects. Caprini and Purpurascentes of sect. Caprini are not natural groups; (2) sects. Alopecuroidei and Laxiflori are nested within sect. Astragalus; and (3) subsect. Chronopus constitutes a separate phylogenetic lineage. Representatives of sects. Astragalus, Alopecuroidei, and Laxiflori share a common ancestor with that of sect. Caprini. Our studies indicate that Astragalus annularis is an outlier species for the genus Astragalus and sect. Caraganella is the first-diverging clade within the genus Astragalus. Results of these analyses are supported by morphology and suggest the need for new taxonomic delimitations, which are forthcoming. Key morphological characters were mapped onto the phylogenetic tree and discussed.


Astragalus sect. Alopecuroidei sect. Caprini sect. Laxiflori cpDNA ETS rDNA 



The authors are indebted in Prof. Dr. D. Podlech (Munich) for his critical comments and suggestions. We thank the following: Dr. F. Attar, Dr. H. Ebrahimzadeh, Dr. V. Niknam, and M. Mirmasoumi (Department of Plant Sciences, University of Tehran) for providing lab facilities. We are grateful to the curators of Central Herbarium of University of Tehran (TUH) and the Herbarium of Research Institute of Forests and Rangelands (TARI) for the loan of materials and permission to extract DNA from selected specimens. Grants from the Research Council, as well as Council of International Office of the University of Tehran to S.Z. are gratefully acknowledged. Alexander von Humboldt Stiftung (Germany) also supported S.Z. through a generous scholarship.


  1. Agerer-Kirchhoff C (1976) Revision von Astragalus L. sect. Astragalus (Leguminosae). Boissiera 25:1–197Google Scholar
  2. Agerer-Kirchhoff C, Agerer R (1977) Eine neue Sektion der Gattung Astragalus L.: Laxiflori Agerer-Kirchhoff. Mitt Bot Staatssamml München 13:203–234Google Scholar
  3. Allard MW, Carpenter JM (1996) On weighting and congruence. Cladistics 12:183–198CrossRefGoogle Scholar
  4. Baldwin BG, Markos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S-26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Mol Phylogenet Evo 10:449–463Google Scholar
  5. Becht R (1978) Revision der Sektion Alopecuroidei DC. der Gattung Astragalus. Phanerogamarum Monographiae X. Cramer, VaduzGoogle Scholar
  6. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18(5):249–256CrossRefGoogle Scholar
  7. Bunge A (1868) Generis Astragali species Gerontogeae. Mém Acad Imp Sci Saint Petersburg 11:1–140Google Scholar
  8. Bunge A (1869) Generis Astragali species Gerontogeae. Mém Acad Imp Sci Saint Petersbug 15:1–254Google Scholar
  9. Darlu P, Lecointre G (2002) When does the incongruence length difference test fail? Mol Biol Evol 19:432–437PubMedGoogle Scholar
  10. De Candolle AP (1825) Notice sur quelques genres et espèces nouvelles de lègumineuses, extraite de divers Mémoires présentés à la Société d’Histoire naturelle de Genève, pendant le cours des années 1823 et 1824. Ann Sci Natur 4:90–103Google Scholar
  11. Deml I (1972) Revision der Sektionen Acanthophace Bunge und Aegacantha Bunge der Gattung Astragalus L. Boissiera 21:1–235Google Scholar
  12. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797PubMedCrossRefGoogle Scholar
  13. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance if incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  14. Felsenstein J (1981) Evolutionary tree from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–378PubMedCrossRefGoogle Scholar
  15. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 38:783–791CrossRefGoogle Scholar
  16. Goncharov NF, Borisova AG, Gorshkova SG, Popov MG, Vasilchenko IT (1965) Astragalus. In: Komarov VL, Shishkin BK (eds) Flora of the USSR, vol 12. Israel Program for Scientific Translations/Smithsonian Institution and the National Science Foundation, Jerusalem/Washington, pp 1–918Google Scholar
  17. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523PubMedGoogle Scholar
  18. Hipp AL, Hall JC, Sytsma KJ (2004) Phylogenetic accuracy, congruence between data partitions, and performance of the ILD. Syst Biol 53:81–89PubMedCrossRefGoogle Scholar
  19. Javadi F, Wojciechowski MF, Yamaguchi H (2007) Geographical diversification of the genus Cicer (Leguminosae: Papilionoideae) inferred from molecular phylogenetic analyses of chloroplast and nuclear DNA sequences. Bot J Linn Soc 154(2):175–186Google Scholar
  20. Kazemi M, Kazempour Osaloo S, Maassoumi AA, Rastegar Pouyani E (2009) Molecular phylogeny of selected Old World Astragalus (Fabaceae): incongruence among chloroplast trnL-F, ndhF and nuclear ribosomal DNA ITS sequences. Nord J Bot 27(12):425–436CrossRefGoogle Scholar
  21. Kazempour Osaloo S (2007) Phylogenetic relationships in the inverted repeat lacking clade (IRLC) of papilionoid legumes based on nrDNA ITS sequences. In: Abstract book. First National Plant Taxonomy Conference of Iran, Tehran, pp 106–107Google Scholar
  22. Kazempour Osaloo S, Maassoumi AA, Murakani N (2003) Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analysis of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Pl Syst Evol 242:1–32Google Scholar
  23. Kazempour Osaloo S, Maassoumi AA, Murakani N (2005) Molecular systematics of the Old World Astragalus (Fabaceae) as inferred from nrDNA ITS sequence data. Brittonia 57:367–381CrossRefGoogle Scholar
  24. Lewis GP, Schrire BD, Mackinder BA, Lock M (2005) Legumes of the world. Royal Botanic Gardens, Kew, pp 475–481Google Scholar
  25. Liston A, Wheeler JA (1994) The phylogenetic position of the genus Astragalus (Fabaceae): evidence from the chloroplast genes rpoC1 and rpoC2. Biochem Sys Ecol 22:377–388CrossRefGoogle Scholar
  26. Maassoumi AA (1989) The genus Astragalus in Iran, vol 2. Jahad-e Sazandgi Research Institute of Forests and Rangelands, TehranGoogle Scholar
  27. Maassoumi AA (1998) Astragalus in the Old World check-list. Research Institute of Forests and Rangeland, TehranGoogle Scholar
  28. Maassoumi AA (2003) Papilionaceae I (Astragalus), vol 43. Research Institute of Forests and Rangelands, TehranGoogle Scholar
  29. Mabberley DJ (2008) Mabberley’s plant-book. A portable dictionary of plants, their classification and uses, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  30. Maddison DR, Maddison WP (2006) Mesquite, a modular system for evolutionary analysis.
  31. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326PubMedCrossRefGoogle Scholar
  32. Ott E (1978) Revision der Sektion Chronopus Bge. der Gattung Astragalus L. Phan Monogr, vol 9. Cramer, VaduzGoogle Scholar
  33. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comp Appl Biosci 12:357–358PubMedGoogle Scholar
  34. Podlech D (1975) Revision der Sektion Caraganella Bunge der Gattung Astragalus L. Mitt Bot Staatssamml München 12:153–166Google Scholar
  35. Podlech D (1982) Neue Aspekte zur Evolution und Gliederung der Gattung Astragalus L. Mitt Bot Staatssamml München 18:359–378Google Scholar
  36. Podlech D (1986) Taxonomic and phytogeographical problems in Astragalus of the Old World and southwest Asia. Proc R Soc Edinb 89:37–43Google Scholar
  37. Podlech D (1988) Revision von Astragalus L. sect. Caprini DC. (Leguminosae). Mitt Bot Staatssamml München 25:1–924Google Scholar
  38. Podlech D (1998) Phylogeny and progression of characters in Old World Astragali (Leguminosae). In: Zhang A, Wu S (eds) Floristic characteristics and diversity of East Asian plants. China Higher Education Press, Beijing, pp 405–407Google Scholar
  39. Podlech D (1999) Papilionaceae III: Astragalus I. In: Rechinger KH (ed) Flora Iranica, vol 174. Akademische Druck-u. Verlagsanstalt, Graz, pp 1–350Google Scholar
  40. Posada D, Crandall KA (1998) Model test: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  41. Ranjbar M, Maassoumi AA, Podlech D (2002) Astragalus sect. Alopecuroidei (Fabaceae) in Iran, complementary notes with a key to the species. Willdenowia 32:85–91Google Scholar
  42. Riahi M, Zarre S, Maassoumi AA, Attar F, Kazempour Osaloo S (2010) An inexpensive and rapid method for extracting papilionoid genomic DNA. Genet Mol Res 9:1334–1342PubMedCrossRefGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  44. Ronquist F, Huelsenbeck JP, Van der Mark P (2005) MrBayes 3.1 manual.
  45. Sanderson MJ (1991) Phylogenetic relationships within North American Astragalus L. (Fabaceae). Syst Bot 16:414–430CrossRefGoogle Scholar
  46. Sanderson MJ, Wojciechowski MF (1996) Diversification rates in a temperate legume clade: are there “so many species” of Astragalus (Fabaceae)? Am J Bot 83:1488–1502CrossRefGoogle Scholar
  47. Scherson RA, Vidal R, Sanderson MJ (2008) Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. Am J Bot 95:1030–1039CrossRefGoogle Scholar
  48. Shaw J, Lickey E, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166Google Scholar
  49. Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116Google Scholar
  50. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  51. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony,* and other methods. 4.0b10. Sinauer Associates, MassachusettsGoogle Scholar
  52. Taeb F, Zarre S, Podlech D, Tillich HJ, Kazempour Osaloo S, Maassoumi AA (2007) A contribution to the phylogeny of annual species of Astragalus (Fabaceae) in the Old World using hair micromorphology and other morphological characters. Feddes Repert 118:206–225CrossRefGoogle Scholar
  53. Wojciechowski MF (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396CrossRefGoogle Scholar
  54. Wojciechowski MF, Sanderson MJ, Hu JM (1999) Evidence on the monophyly of Astragalus (Fabaceae) and its major subgroups based on nuclear ribosomal DNA ITS and chloroplast DNA trnL intron data. Syst Bot 24:409–437CrossRefGoogle Scholar
  55. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A (2000) Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: a super tree approach. In: Herendeen P, Bruneau A (eds) Advances in legume systematics, part 9. Royal Botanic Garden, Kew, pp 277–298Google Scholar
  56. Xu DH, Sakai AJ, Kanazawa M, Shimamoto A, Shimamoto Y (2000) Sequence variation of non-coding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor Appl Genet 101:724–732Google Scholar
  57. Yoder AD, Irwin JA, Payseur BA (2001) Failure of the ILD to determine data combinability for slow loris phylogeny. Syst Biol 50:408–424PubMedCrossRefGoogle Scholar
  58. Zarre S (2003) Hair micromorphology and its phylogenetic application in the phylogeny of Astragalus. Bot J Linn Soc 143:323–330CrossRefGoogle Scholar
  59. Zhang M, Kang Y, Zhou L, Podlech D (2009) Phylogenetic origin of Phyllolobium with a further implication for diversification of Astragalus in China. J Integr Plant Biol 51:889–899PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Mehrshid Riahi
    • 1
  • Shahin Zarre
    • 1
    Email author
  • Ali Aasghar Maassoumi
    • 2
  • Shahrokh Kazempour Osaloo
    • 3
  • Martin F. Wojciechowski
    • 4
  1. 1.Department of Plant Sciences, School of BiologyCollege of Science, University of TehranTehranIran
  2. 2.Department of BotanyResearch Institute of Forests and RangelandsTehranIran
  3. 3.Department of Plant Biology, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  4. 4.School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations