Plant Systematics and Evolution

, Volume 292, Issue 3–4, pp 223–248 | Cite as

A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on non-monophyletic and monotypic genera

  • Michael Möller
  • Alan Forrest
  • Yi-Gang Wei
  • Anton Weber
Original Article


Based on a considerably enlarged sampling, a phylogenetic analysis of the largest group of didymocarpoid Gesneriaceae, the “advanced Asiatic and Malesian genera”, was performed, covering all but 3 of the 60 genera presently recognised in this group (20 of these, mostly from China, are monotypic). The results suggest that no fewer than 17 out of the 57 genera examined are poly- (or rarely para-)phyletic. Highly polyphyletic are Briggsia, Chirita, Henckelia and Raphiocarpus. Only a dozen of the non-monotypic genera (including the three species-richest genera, Cyrtandra, Aeschynanthus and Agalmyla) are confirmed as monophyletic entities, though some exhibit considerable genetic variation. For eight genera, no statement can be made, as only one (of two or several) species was included in the analysis. For a dozen of the (particularly Chinese) monotypic genera a close relationship (or possible congenerity) with other genera was found. In China, only Allostigma, Cathayanthe, Conandron and Metapetrocosmea seem to have no strong affinities to other genera, indicating that they represent phylogenetically isolated lineages or represent remnants of previously larger and earlier diversified groups. The present study forms the foundation for targeted molecular, morphological and phytogeographic studies of the polyphyletic and monotypic genera and particular of clades of genera with interrelations uncovered here for the first time.


Bayesian inference analysis ITS Maximum parsimony Molecular phylogeny Monotypic genera Old World didymocarpoid Gesneriaceae Taxonomy trnL-F intron-spacer 



The authors are grateful to many people contributing at various levels to the successful completion of the work presented here. MM is particularly grateful to the director of the Kunming Institute of Botany (KIB, CAS), Prof Dr. D.Z. Li, and to Dr. L.M. Gao for technical and scientific support while staying in China. For providing DNA samples and sequences our thanks go to F. Wen, L.M. Gao, N.B. Ming, Y.M. Shui, Y.Z. Wang, D.W. Zhang, R. Kiew, M.A.M. Hairuf, Y.T. Leong, A.R. Rafidah, Y.T. Leong, L.C. Lu, J. Sang, C. Geri, P. Triboun, G. Kokubugata, B. Adhikari, D.J. Middleton, C. Puglisi, G. Argent and M. Mendum (†). Last but not least, thanks to the horticulturists at the Royal Botanic Garden Edinburgh (RBGE), S. Scott and S. Barber, for expertly maintaining and curating the living Gesneriaceae collections at RBGE. We also would like to thank A. Chautems and an anonymous reviewer for critical comments on the manuscript. The work was carried out in cooperation between the University of Vienna (supported by the Austrian Science Fonds, FWF-Project no. P-13107-Bio) and the RBGE. RBGE is supported by the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD). Fieldwork of MM was supported by the Davis Expedition Fund of the University of Edinburgh, Oleg Polunin Memorial Fund, Percy Sladen Memorial Fund, the Royal Horticultural Society, the RBGE Expedition Fund and the Science & Technology Innovation Program of Guangxi Academy of Sciences Fund.

Supplementary material

606_2010_413_MOESM1_ESM.pdf (483 kb)
Supplementary material 1 (PDF 482 kb)
606_2010_413_MOESM2_ESM.pdf (410 kb)
Supplementary material 2 (PDF 410 kb)
606_2010_413_MOESM3_ESM.pdf (485 kb)
Supplementary material 3 (PDF 485 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723CrossRefGoogle Scholar
  2. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266PubMedCrossRefGoogle Scholar
  3. Atkins H, Preston J, Cronk QCB (2001) A molecular test of Huxley’s line: Cyrtandra (Gesneriaceae) in Borneo and the Philippines. Biol J Linn Soc Lond 72:143–159CrossRefGoogle Scholar
  4. Bentham G (1876) Gesneriaceae. In: Bentham G, Hooker JD (eds) Genera Plantarum, vol 2, part 2. Lovell Reeve & Co., London, pp 990–1025Google Scholar
  5. Bramley GLC, Pennington RT, Zakaria R, Tjitrosoedirdjo SS, Cronk QCB (2004) Assembly of tropical plant diversity on a local scale: Cyrtandra (Gesneriaceae) on Mount Kerinci, Sumatra. Biol J Linn Soc Lond 81:49–62CrossRefGoogle Scholar
  6. Burtt BL (1956) An independent genus for Oreocharis primuloides. Baileya 4:161–162Google Scholar
  7. Burtt BL (1958) Studies in the Gesneriaceae of the Old World. XII. Opithandra, a genus with sterile anticous stamens. Notes Roy Bot Gard Edinburgh 22:300–303Google Scholar
  8. Burtt BL (1960) Studies in the Gesneriaceae of the Old World XVIII. The controversy on Phylloboea. Notes Roy Bot Gard Edinburgh 23:89–90Google Scholar
  9. Burtt BL (1962) Studies in the Gesneriaceae of the Old World XXIV. Tentative keys to the tribes and genera. Notes Roy Bot Gard Edinburgh 24:205–220Google Scholar
  10. Burtt BL (1968) Studies in the Gesneriaceae of the Old World XXIX. A reconsideration of generic limits in tribe Trichosporeae. Notes Roy Bot Gard Edinburgh 29:219–225Google Scholar
  11. Burtt BL (1970) Studies in the Gesneriaceae of the Old World. XXXI. Some aspects of functional evolution. Notes Roy Bot Gard Edinburgh 30:1–10Google Scholar
  12. Burtt BL (1975) Studies in the Gesneriaceae of the Old World XL. The genus Loxostigma. Notes Roy Bot Gard Edinburgh 34:101–105Google Scholar
  13. Burtt BL (1984) Studies in the Gesneriaceae of the Old World XLVII. Revised generic concepts for Boea and its allies. Notes Roy Bot Gard Edinburgh 41:401–452Google Scholar
  14. Burtt BL (1998) Climatic accomodation and phytogeography of the Gesneriaceae of the Old World. In: Mathew P, Sivadasan M (eds) Diversity and taxonomy of tropical flowering plants. Mentor Books, Kerala, pp 1–27Google Scholar
  15. Burtt BL (2001a) A survey of the genus Cyrtandra (Gesneriaceae). Phytomorphology, Golden Jubilee Issue:393–404Google Scholar
  16. Burtt BL (2001b) Flora of Thailand: annotated checklist of Gesneriaceae. Thai Forest Bulletin (Botany) 29:81–109Google Scholar
  17. Burtt BL, Wiehler H (1995) Classification of the family Gesneriaceae. Gesneriana 1:1–4Google Scholar
  18. Chapman A (2003) Relationships in the genus Agalmyla (Gesneriaceae)––inferred from molecular, morphological and cytological data. MSc thesis, University of Edinburgh, UKGoogle Scholar
  19. Clark JR, Ree RH, Alfaro ME, King MG, Wagner WL, Roalson EH (2008) A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. Syst Biol 57:693–707PubMedCrossRefGoogle Scholar
  20. Cronk QCB, Kiehn M, Wagner WL, Smith JF (2005) Evolution of Cyrtandra (Gesneriaceae) in the Pacific ocean: the origin of a supertramp clade. Amer J Bot 92:1017–1024CrossRefGoogle Scholar
  21. Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52:477–487PubMedCrossRefGoogle Scholar
  22. Darbyshire I (2006) Gesneriaceae. In: Beentje HJ, Ghazanfar SA (eds) Flora of tropical East Africa. Royal Botanic Gardens Kew, London, pp 1–76Google Scholar
  23. Denduangboripant J, Cronk QCB (2000) High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc R Soc Lond B Biol Sci 267:1407–1415CrossRefGoogle Scholar
  24. Denduangboripant J, Cronk QCB (2001) Evolution and alignment of the hypervariable arm 1 of Aeschynanthus (Gesneriaceae) ITS2 nuclear ribosomal DNA. Mol Phyl Evol 20:163–172CrossRefGoogle Scholar
  25. Denduangboripant J, Mendum M, Cronk QCB (2001) Evolution in Aeschynanthus (Gesneriaceae) inferred from ITS sequences. Plant Syst Evol 228:181–197CrossRefGoogle Scholar
  26. Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52:665–673PubMedCrossRefGoogle Scholar
  27. Fang D, Qin DH (2004) Wentsaiboea D.Fang & D.H.Qin, a new genus of the Gesneriaceae from Guangxi, China. Acta Phytotax Sin 42:533–536Google Scholar
  28. Farris JS (1989) The retention index and homoplasy excess. Syst Zool 38:406–407CrossRefGoogle Scholar
  29. Farris J, Källersjö SM, Kluge AG, Bult C (1995a) Constructing a significance test for incongruence. Syst Biol 44:570–572Google Scholar
  30. Farris J, Källersjö SM, Kluge AG, Bult C (1995b) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  31. Felsenstein J (1985) Confidence-limits on phylogenies––an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  32. Fritsch K (1893–94) Gesneriaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol 4 (3b). Engelmann, Leipzig, Germany, pp 133–185Google Scholar
  33. Hilliard OM (2004) A revision of Chirita sect. Liebigia (Gesneriaceae). Edinb J Bot 60:361–387Google Scholar
  34. Hilliard OM, Burtt BL (2002) The genus Agalmyla (Gesneriaceae––Cyrtandroideae). Edinb J Bot 59:1–210Google Scholar
  35. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  36. Huelsenbeck JP, Ronquist F (2007) MrBayes, version 3.1.2. Bayesian analysis of phylogeny. Application program distributed by the authors under the GNU General Public License.
  37. Kiehn M, Weber A (1998) Chromosome numbers of Malayan and other paleotropical Gesneriaceae. II. Tribes Trichosporeae, Cyrtandreae and Epithemateae. Beitr Biol Pflanzen 70:445–470 (“1997”, publ. 26. XI. 1998)Google Scholar
  38. Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32CrossRefGoogle Scholar
  39. Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–37PubMedCrossRefGoogle Scholar
  40. Li H (1982) Two new genera and one little known genus of Gesneriaceae from Yunnan. Acta Bot Yunnan 4:241–247Google Scholar
  41. Li JM, Wang YZ (2007) Phylogenetic reconstruction among species of Chiritopsis and Chirita sect. Gibbosaccus (Gesneriaceae) based on nrDNA ITS and cpDNA trnL-F sequences. Syst Bot 32:888–898CrossRefGoogle Scholar
  42. Liu Y, Xu WB, Pan B (2010) Wentsaiboea tiandengensis sp.nov. and Wentsaiboea luochengensis sp. nov. (Gesneriaceae) from karst caves in Guangxi, southern China. Nordic J Bot 28:739–745Google Scholar
  43. Middleton DJ (2007) A revision of Aeschynanthus (Gesneriaceae) in Thailand. Edinb J Bot 64:363–429Google Scholar
  44. Möller M, Cronk QCB (2001a) Evolution of morphological novelty: a phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution 55:918–929PubMedCrossRefGoogle Scholar
  45. Möller M, Cronk QCB (2001b) Phylogenetic studies in Streptocarpus (Gesneriaceae): reconstruction of biogeographic history and distribution patterns. Syst Geogr Pl 71:545–555CrossRefGoogle Scholar
  46. Möller M, Clokie M, Cubas P, Cronk QCB (1999) Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor & Francis, London, pp 375–402Google Scholar
  47. Möller M, Pfosser M, Jang CG, Mayer V, Clark A, Hollingsworth ML, Barfuss MHJ, Wang YZ, Kiehn M, Weber A (2009) A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: Incongruence with available tribal classifications. Amer J Bot 96:989–1010CrossRefGoogle Scholar
  48. Nixon KC (1999) The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  49. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, SwedenGoogle Scholar
  50. Sikes DS, Lewis PO (2001) PAUPRat beta software, version 1: PAUP* implementation of the parsimony ratchet. Distributed by the authors. Department of Ecology and Evolutionary Biology. University of Connecticut, StorrsGoogle Scholar
  51. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer. Sunderland, MassachusettsGoogle Scholar
  52. Wang WT (1985) The second revision of the genus Petrocosmea (Gesneriaceae). Acta Bot Yunnan 7:49–68 Google Scholar
  53. Wang WT, Pan KY (1982) Notulae de Gesneriaceis Sinensibus (III). Bull Bot Res, Harbin 2:121–152Google Scholar
  54. Wang WT, Pan KY, Li ZY (1990) Gesneriaceae. In: Wang WT (ed) Flora Reipublicae Popularis Sinicae, vol 69. Science Press, Beijing, pp 125–581Google Scholar
  55. Wang WT, Pan KY, Li ZY, Weitzman Al, Skog LE (1998) Gesneriaceae. In: Wang WT (ed) Flora of China. Science Press, Beijing, pp 244–401Google Scholar
  56. Wang YZ, Liang RH, Wang BH, Li JM, Qiu ZJ, Li ZY, Weber A (2010) Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59:1044–1052Google Scholar
  57. Weber A (2003) What is morphology and why is it time for its renaissance in plant systematics? Regnum Vegetabile. In: Stuessy T, Mayer V, Hörandl E (eds) Deep morphology: toward a renaissance of morphology in plant systematics, vol 171. A.R.G. Gantner Verlag, Ruggell, pp 3–32Google Scholar
  58. Weber A (2004) Gesneriaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol. 7. Kadereit JW (vol. ed.) Dicotyledons. Lamiales (except Acanthaceae incl. Avicenniaceae). Springer, Berlin, pp 63–158Google Scholar
  59. Weber A, Burtt BL (1998a) Didissandra: redefinition and partition of an artifical genus of Gesneriaceae. Beitr Biol Pflanzen 70:153–177 (“1997”, publ. 26. XI. 1998)Google Scholar
  60. Weber A, Burtt BL (1998b) Revision of the genus Ridleyandra (Gesneriaceae). Beitr Biol Pflanzen 70:225–273 (“1997”, publ. 26. XI. 1998)Google Scholar
  61. Weber A, Burtt BL (1998c) Remodelling of Didymocarpus and associated genera (Gesneriaceae). Beitr Biol Pflanzen 70:293–363 (“1997”, publ. 26. XI. 1998)Google Scholar
  62. Weber A, Skog LE (2007) The genera of Gesneriaceae. Basic information with illustration of selected species.
  63. Wei YG (2004) Paralagarosolen Y.G. Wei, a new genus of the Gesneriaceae from Guangxi, China. Acta Phytotax Sin 42:528–532Google Scholar
  64. Wei YG, Wen F, Chen WH, Shui YM, Möller M (2010) Litostigma, a new genus from China: a morphological link between basal and derived didymocarpoid Gesneriaceae. Edinb J Bot 67:161–184CrossRefGoogle Scholar
  65. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Michael Möller
    • 1
  • Alan Forrest
    • 1
  • Yi-Gang Wei
    • 2
  • Anton Weber
    • 3
  1. 1.Royal Botanic Garden EdinburghEdinburghUK
  2. 2.The Botanical Institute of GuangxiGuilinChina
  3. 3.Faculty Center of BotanyUniversity of ViennaViennaAustria

Personalised recommendations