Plant Systematics and Evolution

, Volume 292, Issue 3–4, pp 133–141 | Cite as

Does spatial genetic structure increase with altitude? An answer from Picea abies in Tyrol, Austria

Original Article

Abstract

Harsh environment at high altitude may affect the mating system of plant species, especially those with wide ecological amplitude. Smaller effective neighbourhood size, less pollen and seed production, higher rate of inbreeding and a shift towards vegetative propagation may be involved. These changes can be reflected in spatial genetic structure (SGS). Populations of Norway spruce [Picea abies (L.) Karst.] were analysed along an altitudinal cline to verify whether SGS increases with altitude. Three putatively autochthonous populations in Tyrol (Austria) at 800, 1,200 and 1,600 m above sea level (asl) were studied. Six highly polymorphic DNA markers (expressed sequence tag–derived simple sequence repeats, EST-SSRs) were used to genotype a total of 450 contiguous trees (150 trees per population). Loiselle’s kinship coefficient was used to quantify SGS. Against expectation no significant SGS was found in any of the populations, indicating a random spatial pattern. Significant SGS was observed when all populations were treated as a single one conforming to an isolation-by-distance pattern. Nearly identical allelic frequencies were found resulting in very small population differentiation (F ST = 0.002). The fixation index decreased with diameter at breast height (a proxy for age) indicating natural selection against inbred trees. The results of this study indicate that seed and pollen dispersal mechanisms in Norway spruce are strongly counteracting spatial aggregation of similar genotypes even at high elevations.

Keywords

Alps Altitudinal cline EST-SSRs Genetic diversity Norway spruce Spatial genetic structure 

Notes

Acknowledgements

This research was financially supported as part of the project “Green Heritage”. We thank the funding consortium Austrian Research Promotion Agency (FFG), FHP Kooperationsplattform Forst Holz Papier, Lieco GmbH & Co KG and Österreichische Bundesforste AG for their support. Furthermore Hans Herz, Lambert Weißenbacher and Richard Oblasser were a great help in the field sampling. Special thanks are due to Peter Zwerger and Andreas Kitschmer for identifying suitable plots. The authors also thank Silvio Schüler for helping with the statistical analysis and an anonymous reviewer for constructive comments on the manuscript.

References

  1. Bergmann F (1978) The allelic distribution at an acid phosphatase locus in Norway spruce (Picea abies) along similar climatic gradients. Theor Appl Genet 52:57–64Google Scholar
  2. Bergmann F, Gregorius HR (1979) Comparison of the genetic diversities of various populations of Norway spruce (Picea abies). In: Proceedings of a Conference on Biochemical Genetics of Forest Trees. Swedish University of Agricultural Sciences, Umeå, pp 99–107Google Scholar
  3. Burczyk J (1991) The mating system in a Scots pine clonal seed orchard in Poland. Ann Sci For 48:443–451CrossRefGoogle Scholar
  4. Burczyk J, Koralewski TE (2005) Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations. Mol Ecol 14:2525–2537PubMedCrossRefGoogle Scholar
  5. Burczyk J, Lewandowski A, Chałupka W (2004) Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.). For Ecol Manage 197:39–48CrossRefGoogle Scholar
  6. Clark PJ, Evans FC (1954) Distance to nearest neighbour as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  7. Danielewicz W, Pawlaczyk P (2007) Community dynamics of Norway spruce. In: Tjoelker MG, Boratyński A, Bugała W (eds) Biology and ecology of Norway spruce. Springer, Dordrecht, pp 221–253Google Scholar
  8. Doligez A, Joly HI (1997) Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae), in French Guiana. Heredity 79:72–82CrossRefGoogle Scholar
  9. Doligez A, Baril C, Joly HI (1998) Fine-scale spatial genetic structure with nonuniform distribution of individuals. Genetics 148:905–919PubMedGoogle Scholar
  10. Eisenhut G (1961) Untersuchungen über die Morphologie und Ökologie der Pollenkörner heimischer und fremdländischer Waldbäume. Forstwiss Forsch 15:1–68Google Scholar
  11. Epperson BK (2003) Geographical genetics. Princeton University Press, PrincetonGoogle Scholar
  12. Epperson BK, Chung MG (2001) Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Am J Bot 88:1006–1010PubMedCrossRefGoogle Scholar
  13. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. Programme available via http://cmpg.unibe.ch/software/arlequin35. Accessed 24 Oct 2010
  14. Fournier N, Rigling A, Dobbertin M, Gugerli F (2006) Faible différenciation génétique, à partir d’amplification aléatoire d’ADN polymorphe (RAPD) entre les types de pin sylvestre (Pinus sylvestris L.) d’altitude et de plaine dans les Alpes à climat continental. Ann For Sci 63:431–439CrossRefGoogle Scholar
  15. Gadow KV, Hui GY, Albert M (1998) Das Winkelmaß – ein Strukturparameter zur Beschreibung der Individualverteilung in Waldbeständen. Cent Bl Ges Forstwes 115:1–10Google Scholar
  16. Gapare W, Aitken S, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr.) populations: implications for conservation of widespread species. Biol Conserv 123:113–123CrossRefGoogle Scholar
  17. Geburek T (1998) Genetic variation of Norway spruce (Picea abies [L.] Karst.) populations in Austria. I. Digenic disequilibrium and microspatial patterns derived from allozymes. For Genet 5:221–230Google Scholar
  18. Geburek T (1999) Genetic variation of Norway spruce (Picea abies [L.] Karst.) populations in Austria. III. Macrospatial allozyme patterns of high elevation populations. For Genet 6:201–211Google Scholar
  19. Geburek T, Tripp-Knowles P (1994) Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis. Plant Syst Evol 189:63–74CrossRefGoogle Scholar
  20. Geburek T, Mottinger-Kroupa S, Morgante M, Burg K (1998) Genetic variation of Norway spruce (Picea abies [L.] Karst.) populations in Austria. II. Microspatial patterns derived from nuclear sequence tagged microsatellite sites. For Genet 5:231–237Google Scholar
  21. Geburek T, Robitschek K, Milasowszky N, Schadauer K (2007) Different cone colours pay off: lessons learnt from European larch (Larix decidua) and Norway spruce (Picea abies). Can J Bot 85:132–140CrossRefGoogle Scholar
  22. Gömöry D, Fabrika M, Chudy F, Paule L (2006) Development of genetic structures in a Norway spruce (Picea abies Karst.) population colonizing the abandoned agricultural land: a look back and a look ahead. Pol J Ecol 54:127–136Google Scholar
  23. González-Martínez SC, Burczyk J, Nathan R, Nanos N, Gil L, Alía R (2006) Effective gene dispersal and female reproductive success in Mediterranean maritime pine (Pinus pinaster Aiton). Mol Ecol 15:4577–4588PubMedCrossRefGoogle Scholar
  24. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet. Accessed 24 Mar 2009
  25. Gugerli F, Sperisen Ch, Büchler U, Magni F, Geburek T, Jeandroz S, Senn J (2001) Haplotype variation in a mitochondrial tandem repeat of Norway spruce (Picea abies) populations suggests a serious founder effect during postglacial re-colonization of the western Alps. Mol Ecol 10:1255–1263PubMedCrossRefGoogle Scholar
  26. Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588PubMedCrossRefGoogle Scholar
  27. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  28. Hardy OJ, Maggia L, Bandou E, Breyne P, Caron H, Chevallier MH, Doligez A, Dutech C, Kremer A, Latouche-Hallé C, Troispoux V, Veron V, Degen B (2006) Fine-scale genetic structure and gene dispersal inferences in 10 Neotropical tree species. Mol Ecol 15:559–571PubMedCrossRefGoogle Scholar
  29. Knowles P (1991) Spatial genetic structure within two natural stands of black spruce (Picea mariana (Mill.) B.S.P.). Silvae Genet 40:13–19Google Scholar
  30. Knowles P, Perry DJ, Foster HA (1992) Spatial genetic structure in two tamarack [Larix laricina (Du Roi) K. Koch] populations with differing establishment histories. Evolution 46:572–576CrossRefGoogle Scholar
  31. Kohlermann L (1950) Untersuchungen über die Windverbreitung der Früchte und Samen mitteleuropäischer Waldbäume. Forstwiss Cent Bl 69:606–624CrossRefGoogle Scholar
  32. Lagercrantz U, Ryman N (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:38–58CrossRefGoogle Scholar
  33. Leonardi S, Menozzi P (1996) Spatial structure of genetic variability in natural stands of Fagus sylvatica L. (beech) in Italy. Heredity 77:359–368CrossRefGoogle Scholar
  34. Leonardi S, Raddi S, Borghetti M (1996) Spatial autocorrelation of allozyme traits in a Norway spruce (Picea abies) population. Can J For Res 26:63–71CrossRefGoogle Scholar
  35. Lian C, Goto S, Kubo T, Takahashi Y, Nakagawa M, Hogetsu T (2008) Nuclear and chloroplast microsatellite analysis of Abies sachalinensis regeneration on fallen logs in a subboreal forest in Hokkaido, Japan. Mol Ecol 17:2948–2962PubMedCrossRefGoogle Scholar
  36. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  37. Marquardt PE, Epperson BK (2004) Spatial and population genetic structure of microsatellites in white pine. Mol Ecol 13:3305–3315PubMedCrossRefGoogle Scholar
  38. McCauley DE, Stevens JE, Peroni PA, Raveill JA (1996) The spatial distribution of chloroplast DNA and allozyme polymorphisms within a population of Silene alba (Caryophyllaceae). Am J Bot 83:727–731CrossRefGoogle Scholar
  39. Mehtatälo L (2004) A longitudinal height–diameter model for Norway spruce in Finland. Can J For Res 34:131–140CrossRefGoogle Scholar
  40. Müller-Starck G, Konnert M, Hussendörfer E (2000) Empfehlungen zur genetisch nachhaltigen Waldbewirtschaftung—Beispiele aus dem Gebirgswald. For Snow Landsc Res 75:29–50Google Scholar
  41. Muona O, Paule L, Szmidt AE, Kärkkäinen K (1990) Mating system analysis in a Central and Northern European population of Picea abies. Scand J For Res 5:97–102CrossRefGoogle Scholar
  42. Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348CrossRefGoogle Scholar
  43. Ortiz PL, Arista M, Talvera S (2002) Sex ratio and reproductive effort in the dioecios Juniperus communis subsp. alpina (Suter) Čelak. (Cupressaceae) along an altitudinal gradient. Ann Bot 89:205–211PubMedCrossRefGoogle Scholar
  44. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel—population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  45. Piotti A, Leopardi S, Piovani P, Scalfi M, Menozzi P (2009) Spruce colonization at treeline: where do those seeds come from? Heredity 103:136–145PubMedCrossRefGoogle Scholar
  46. Raddi S (1993) Genetic studies on beech populations in Italy. In: Muhs HJ, von Wuehlisch G (ed) The scientific basis for the evaluation of forest genetic resources of beech. Proceedings of an EC Workshop, Ahrensburg, 1993, working document of the EC, DG VI, Brussels, pp 209–213Google Scholar
  47. Raymond M, Rousset F (1995) GENEPOP version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249. Software available via http://kimura.univ-montp2.fr/%7Erousset/Genepop.htm. Accessed 24 Mar 2009
  48. Robledo-Arnuncio JJ, Smouse PE, Gil L, Alia R (2004) Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For Ecol Manage 197:245–255CrossRefGoogle Scholar
  49. Rungis D, Berube Y, Zhang J, Ralph S, Ritland DE, Ellis BE, Douglas C, Bohlmann J, Ritland K (2004) Robust simple sequence repeat markers for spruce (Picea spp.) from expressed sequence tags. Theor Appl Genet 109:1283–1294PubMedCrossRefGoogle Scholar
  50. Savolainen O, Pyhäjärvi T, Knürr T (2007) Gene flow and local adaptation in trees. Annu Rev Ecol Evol Syst 38:595–619CrossRefGoogle Scholar
  51. Scotti I, Paglia G, Magni F, Morgante M (2006) Population genetics of Norway spruce (Picea abies Karst.) at regional scale: sensitivity of different microsatellite motif classes in detecting differentiation. Ann For Sci 63:485–491CrossRefGoogle Scholar
  52. Scotti I, Gugerli F, Pastorelli R, Sebastiani F, Vendramin GG (2008) Maternally and paternally inherited molecular markers elucidate population patterns and inferred dispersal processes on a small scale within a subalpine stand of Norway spruce (Picea abies [L.] Karst.). For Ecol Manage 255:3806–3812CrossRefGoogle Scholar
  53. Tiefenbacher H (1989) Natürliche und künstliche vegetative Vermehrung von Fichten der subalpinen Kampfzone (Picea abies Karst.). VWGÖ, WienGoogle Scholar
  54. Tollefsrud MM, Kissling R, Gugerli F, Johnsen O, Skroppa T, Rachid C, van der Knaap WO, Latalowa M, Terhürne-Berson R, Litt T, Geburek T, Brochmann C, Sperisen C (2008) Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol Ecol 17:4134–4150PubMedCrossRefGoogle Scholar
  55. Tollefsrud MM, Sonstebo JH, Brochmann C, Johnsen O, Skroppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562PubMedCrossRefGoogle Scholar
  56. Troupin D, Nathan R, Vendramin GG (2006) Analysis of spatial genetic structure in an expanding Pinus halepensis population reveals development of fine-scale genetic clustering over time. Mol Ecol 15:3617–3630PubMedCrossRefGoogle Scholar
  57. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13:921–935PubMedCrossRefGoogle Scholar
  58. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedGoogle Scholar
  59. Wright S (1946) Isolation by distance under diverse systems of mating. Genetics 31:39–51Google Scholar
  60. Xie CY, Knowles P (1994) Mating system and effective pollen immigration in a Norway spruce (Picea abies (L.) Karst.) plantation. Silvae Genet 43:48–51Google Scholar
  61. Yazdani R, Scotti I, Jansson G, Plomion C, Mathur G (2003) Inheritance and diversity of simple sequence repeat (SSR) microsatellite markers in various families of Picea abies. Hereditas 138:219–227PubMedCrossRefGoogle Scholar
  62. Young AG, Merriam HG (1994) Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh. (sugar maple) populations. Heredity 72:201–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of GeneticsFederal Research and Training Centre for Forests, Natural Hazards and LandscapeViennaAustria

Personalised recommendations