Plant Systematics and Evolution

, Volume 290, Issue 1–4, pp 173–184 | Cite as

Phylogeny of the Southeast Asian endemic genus Neocinnamomum H. Liu (Lauraceae)

Original Article

Abstract

A phylogenetic analysis of Neocinnamomum H. Liu and related genera was conducted using psbA–trnH, trnK cpDNA regions, and the ITS nrDNA segment. Neocinnamomum was confirmed to be monophyletic, and an evolutionary series of inflorescence development within the genus was recognized. The compound thyrse seen in N. caudatum is reduced to the few- to many-flowered condensed inflorescences with a poorly defined branching system seen in most species and ultimately to the 1-flowered inflorescence seen in N. atjehense. Consensus network analysis (CNA) suggested that long-branch attraction is responsible for the observed close relationship between Neocinnamomum and Cassytha L. in a combined analysis of the complete data. In contrast, the sister relationship of Neocinnamomum and Caryodaphnopsis seen in the Bayesian analyses of the partial combined matrix was supported by CNA and is also supported by morphology and wood and bark anatomy. The close similarity of the compound thyrse of less derived Neocinnamomum species to the thyrsoid inflorescences of some Caryodaphnopsis species is also seen as strong support for their affinity.

Keywords

Neocinnamomum Cassytha Caryodaphnopsis Lauraceae Phylogeny Long-branch attraction Consensus network 

References

  1. Aldrich J, Cherney BW, Merlin E (1988) The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet 14:137–146CrossRefPubMedGoogle Scholar
  2. Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193CrossRefGoogle Scholar
  3. Buckler ES, Holtsford TP (1996) Zea systematics: ribosomal ITS evidence. Molec Biol Evol 13:612–622PubMedGoogle Scholar
  4. Buckler ES, Ippolito A, Holtsford TP (1997) The evolution for ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832PubMedGoogle Scholar
  5. Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235–247CrossRefPubMedGoogle Scholar
  6. Chanderbali AS, van der Werff H, Renner SS (2001) Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann Missouri Bot Gard 88:104–134CrossRefGoogle Scholar
  7. Doyle JJ, Doyle JS (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  8. Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214Google Scholar
  9. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedGoogle Scholar
  10. Eklund H (2000) Lauraceous flowers from the Late Cretaceous of North Carolina, USA. Bot J Linn Soc 132:397–428CrossRefGoogle Scholar
  11. Farris JS, Källersjö M, Kluge AG, Bult CJ (1995) Constructing a significance test for incongruence. Syst Biol 44:570–572Google Scholar
  12. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  13. Gottwald H (1992) Hölzer aus marinen Sanden des oberen Eozän von Helmstedt (Niedersachsen). Palaeontographica B 225:27–103Google Scholar
  14. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  15. Handel-Mazzetti H (1925) Cinnamomum delavayi Lecomte var. mekongense. Anz Akad Wiss Wien Math-Naturwiss Kl 62:218Google Scholar
  16. Holland BR, Huber KT, Moulton V, Lockhart PJ (2004) Using consensus networks to visualize contradictory evidence for species phylogeny. Molec Biol Evol 21:1459–1461CrossRefPubMedGoogle Scholar
  17. Holland BR, Delsuc F, Moulton V, Baker AJ (2005) Visualizing conflicting evolutionary hypotheses in large collections of trees: using consensus networks to study the origins of placentals and hexapods. Syst Biol 54:66–76CrossRefPubMedGoogle Scholar
  18. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  19. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314CrossRefPubMedGoogle Scholar
  20. Huson D (1998) SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14:68–73CrossRefPubMedGoogle Scholar
  21. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267CrossRefPubMedGoogle Scholar
  22. Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175CrossRefGoogle Scholar
  23. Julia S, Soepadmo E, Yahud W (2009) Problem in the generic delimitation between Alseodaphne, Dehaasia and Nothaphoebe (Lauraceae) in Borneo. Blumea 54:192–197Google Scholar
  24. Kennedy M, Holland BR, Gray RD, Spencer HG (2005) Untangling long branches: identifying conflicting phylogenetic signals using spectral analysis, neighbor-net, and consensus networks. Syst Biol 54:620–633CrossRefPubMedGoogle Scholar
  25. Kostermans AJGH (1957) Lauraceae. Pengumuman Balai Besar Penjelidikan Kehutanan Indonesia 57:1–64Google Scholar
  26. Kostermans AJGH (1974a) A monograph of the genus Neocinnamomum Liou Ho. Reinwardtia 9:85–96Google Scholar
  27. Kostermans AJGH (1974b) A monograph of Caryodaphnopsis A. Shaw. Reinwardtia 9:123–137Google Scholar
  28. Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (2006) An enumeration of plants growing in Kunming Botanical Garden. Yunnan Science and Technology Press, Kunming, ChinaGoogle Scholar
  29. Li J, Li H-W (2004) Advances in Lauraceae systematic research on the world scale. Acta Bot Yunnan 26:1–11Google Scholar
  30. Li H-W, Pai PY, Lee SK, Wei FN, Wei YT, Yang YC, Huang PH, Tsui HP, Shia ZD, Li JL (1984) Lauraceae. In: Li H-W (ed) Flora Republicae Popularis Sinicae, vol. 31. Science Press, BeijingGoogle Scholar
  31. Li J, Christophel DC, Conran JG, Li H-W (2004) Phylogenetic relationships within the Litsea complex (Lauraceae) inferred from sequences of the chloroplast gene matK and nuclear ribosomal DNA ITS regions. Pl Syst Evol 246:19–34CrossRefGoogle Scholar
  32. Li Z-M, Li J, Li H-W (2006) Polyphyly of the genus Actinodaphne (Lauraceae) inferred from the analyses of nrDNA ITS and ETS sequences. Acta Phytotax Sinica 44:272–285CrossRefGoogle Scholar
  33. Li L, Li J, Conran JG, Li H-W (2007) Phylogeny of Neolitsea (Lauraceae) inferred from Bayesian analysis of nrDNA ITS and ETS sequences. Pl Syst Evol 269:203–221CrossRefGoogle Scholar
  34. Li J, Conran JG, Christophel DC, Li Z-M, Li L, Li H-W (2008a) Phylogenetic relationships of the Litsea complex and core Laureae (Lauraceae) using ITS and ETS sequences and morphology. Ann Missouri Bot Gard 95:580–599CrossRefGoogle Scholar
  35. Li X-W (Li H-W), Li J, van der Werff H (2008b) Neocinnamomum H. Liou. In: Wu Z-Y, Raven, PH, Hong, D-Y (eds) Flora of China, vol. 7. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis, pp. 187–189Google Scholar
  36. Liu H (Liou H) (1934) Lauracées de Chine et d’Indochine: contribution à l’étude systématique et phytogéographique. Hermann et Cie, ParisGoogle Scholar
  37. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Steiner KE, de Pamphilis CW (1998) Molecular phylogenetic and evolutionary studies of parasitic plants. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer Academic, Boston, pp 211–241Google Scholar
  38. Philippe H, Zhou Y, Brinkmann H, Rodrigue N, Delsuc F (2005) Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50Google Scholar
  39. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  40. Poux C, Madsen O, Glos JW, de Jong W, Vences M (2008) Molecular phylogeny and divergence times of Malagasy tenrecs: influence of data partitioning and taxon sampling on dating analyses. BMC Evol Biol 8:102Google Scholar
  41. Richter HG (1981) Anatomie des sekundären Xylems und der Rinde der Lauraceae. Sonderb Naturwiss Vereins Hamburg 5:1–148Google Scholar
  42. Rohwer JG (1993) Lauraceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 366–391Google Scholar
  43. Rohwer JG (2000) Toward a phylogenetic classification of the Lauraceae: evidence from matK sequences. Syst Bot 25:60–71CrossRefGoogle Scholar
  44. Rohwer JG, Rudolph B (2005) Jumping genera: the phylogenetic positions of Cassytha, Hypodaphnis, and Neocinnamomum (Lauraceae) based on different analyses of trnK intron sequences. Ann Missouri Bot Gard 92:153–178Google Scholar
  45. Rohwer JG, Richter HG, van der Werff H (1991) Two new genera of Neotropical Lauraceae and critical remarks on their generic delimitation. Ann Missouri Bot Gard 78:388–400CrossRefGoogle Scholar
  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  47. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics: methods and protocols (methods in molecular biology). Humana, Totowa, pp 365–386Google Scholar
  48. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817CrossRefPubMedGoogle Scholar
  49. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefGoogle Scholar
  50. Steele KP, Vilgalys R (1994) Phylogenetic analysis of Polemoniaceae using nucleotide sequences of plastid gene matK. Syst Bot 19:126–142CrossRefGoogle Scholar
  51. Štorchová H, Olson MS (2007) The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. Pl Syst Evol 268:235–256CrossRefGoogle Scholar
  52. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer and Associates, SunderlandGoogle Scholar
  53. van der Werff H (1991) New species of Lauraceae from Ecuador and Peru. Ann Missouri Bot Gard 78:409–423CrossRefGoogle Scholar
  54. van der Werff H (2001) An annotated key to the genera of Lauraceae in the Flora Malesiana region. Blumea 46:125–140Google Scholar
  55. van der Werff H, Richter HG (1985) Caryodaphnopsis Airy-Shaw (Lauraceae), a genus new to the neotropics. Syst Bot 10:166–173CrossRefGoogle Scholar
  56. van der Werff H, Richter HG (1996) Toward an improved classification of Lauraceae. Ann Missouri Bot Gard 83:409–418CrossRefGoogle Scholar
  57. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand GH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Zhi-hua Wang
    • 1
    • 2
    • 5
  • Jie Li
    • 1
    • 2
  • John G. Conran
    • 3
  • Hsi-wen Li
    • 4
  1. 1.Laboratory of Plant Phylogenetics and Conservation BiologyXishuangbanna Tropical Botanical Garden, The Chinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Key Laboratory of Tropical Forest EcologyXishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglunPeople’s Republic of China
  3. 3.Australian Centre for Evolutionary Biology and Biodiversity, School of Earth and Environmental SciencesThe University of AdelaideAdelaideAustralia
  4. 4.Herbarium (KUN), Kunming Institute of BotanyThe Chinese Academy of SciencesKunmingPeople’s Republic of China
  5. 5.Graduate UniversityThe Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations