Plant Systematics and Evolution

, Volume 288, Issue 3–4, pp 191–199 | Cite as

Evolutionary response of Caragana (Fabaceae) to Qinghai–Tibetan Plateau uplift and Asian interior aridification

  • Ming-Li Zhang
  • Peter W. Fritsch
Original Article


Caragana is endemic to temperate Asia, with most species distributed on the Qinghai–Tibetan Plateau (QTP) and in Northwestern China. Consequently its biogeography should be hypothesized to have been affected by QTP uplift. To examine the biogeography of Caragana in relation to QTP uplift and consequent interior aridification, we conducted molecular dating analyses based on three genes (ITS, cpDNA trnS-trnG and rbcL). Results from relaxed Bayesian BEAST, relaxed Bayesian Multidivtime, and PL (penalized likelihood) indicate that QTP uplift, especially the onset of Himalayan motion at 21–17 Ma, triggered the origin of Caragana (with estimated ages 16–14 Ma). The subsequent QTP rapid uplift at 8 Ma is inferred to have driven the evolution and diversification of the three major clades of Caragana: section Caragana (northern China and the Junggar–Altai–Sayan region), section Frutescentes (Central Asia), and sections Bracteolatae and Jubatae, centered in the QTP. A rapid and active speciation process occurring in the QTP intense uplift at 3.4–1.8 Ma, is indicated by the chronogram.


Caragana Molecular phylogenetic dating Biogeography Qinghai–Tibetan Plateau uplift Himalayan motion 



Thanks to Peng Zhang (University of California, Berkeley, USA) for molecular dating help, Jianquan Liu (Lanzhou University, China) for discussion of the QTP biogeography, and to an anonymous reviewer for a very useful suggestion on QTP plant biogeography. Funding is from the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, and the Chinese Academy of Sciences (KSCX2-YW-R-136, KSCX2-YW-2-069).


  1. An ZS, Kutzbach JE, Prell WL, Port SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66CrossRefGoogle Scholar
  2. Bouchenak-Khelladi Y, Verboom GA, Hodkinson TR, Salamin N, Francois O, Chonghaile GN, Savolainen V (2009) The origins and diversification of C4 grasses and savanna-adapted ungulates. Global Change Biol 15:2397–2417CrossRefGoogle Scholar
  3. Cerling TE, Wang Y, Quade J (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361:344–345CrossRefGoogle Scholar
  4. Cerling TE, Harris JM, MacFadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–189CrossRefGoogle Scholar
  5. Chen SY, Xia T, Wang YJ, Liu JQ, Chen SL (2005) Molecular systematics and biogeography of Crawfurdia, Metagentiana and Tripterospermum (Gentianaceae) based on nuclear ribosomal and plastid DNA sequences. Ann Bot 96:413–424CrossRefPubMedGoogle Scholar
  6. Chen SY, Wu GL, Zhang DJ, Gao QB, Duan YZ, Zhang FQ, Chen SL (2008) Potential refugium on the Qinghai-Tibet Plateau revealed by the chloroplast DNA phylogeography of the alpine species Metagentiana striata (Gentianaceae). Bot J Linn Soc 157:125–140CrossRefGoogle Scholar
  7. Cheng HB, Powell C, An ZS, Zhou J, Dong GR (2000) Pliocene uplift of the northern Tibetan Plateau. Geology 28:715–718CrossRefGoogle Scholar
  8. Christin PA, Besnard G, Samaritani E, Duvall MR, Hodkinson TR, Savolainen V, Salamin N (2008) Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr Biol 18:37–43CrossRefPubMedGoogle Scholar
  9. Coleman M, Hodges K (1995) Evidence for Tibetan Plateau uplift before 14 Myr age from new minimum estimate for east–west extension. Nature 374:49–52CrossRefGoogle Scholar
  10. Cowman PF, Bellwood DR, Herwerden L (2009) Dating the evolutionary origins of wrasse lineages (Labridae) and the rise of trophic novelty on coral reefs. Mol Phylogen Evol 52:621–631CrossRefGoogle Scholar
  11. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214CrossRefPubMedGoogle Scholar
  12. Guo ZT, Ruddiman WF, Hao QZ, Wu HB, Qiao YS, Zhu RX, Peng SZ, Wei JJ, Yuan BY, Liu TS (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416:159–163CrossRefPubMedGoogle Scholar
  13. Guo XG, He SP, Zhang YG (2005) Phylogeny and biogeography of Chinese sisorid catfishes re-examined using mitochondrial cytochrome b and 16S rRNA gene sequences. Mol Phylogen Evol 35:344–362CrossRefGoogle Scholar
  14. Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS, Liang MY, Liu JF, Yin QZ, Wei JJ (2008) A major reorganization of Asian climate by the early Miocene. Climate Past 4:153–174CrossRefGoogle Scholar
  15. Harrison TM, Coplend P, Kidd WSF, Yin A (1992) Raising Tibet. Science 255:1663–1670CrossRefPubMedGoogle Scholar
  16. Knapp M, Stöckler K, Havell D, Delsuc F, Sebastiani F, Lockhart PJ (2005) Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech). Plos Biol 3:0038–0043CrossRefGoogle Scholar
  17. Komarov VL (1908) Generis Caragana monographia. Acta Horti Petrop 29:179–388Google Scholar
  18. Komarov VL (1947) VL Komarov Opera selecta. Academic Science URSS, Moscow, pp 159–342Google Scholar
  19. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:575–594CrossRefPubMedGoogle Scholar
  20. Lewis GP, Schrire BD, Mackinder BA, Lock M (eds) (2005) Legumes of the world. Royal Botanic Gardens, KewGoogle Scholar
  21. Li JJ, Fang XM (1998) Research on the uplift of the Qinghai-Xizang Plateau and environmental changes. Chin Sci Bull 43:1569–1574Google Scholar
  22. Liu JQ, Gao TG, Chen ZD, Lu AM (2002) Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogen Evol 23:307–325CrossRefGoogle Scholar
  23. Liu JQ, Wang YJ, Wang AL, Hedeaki O, Abbott R (2006) Radiation and diversification within the LigulariaCremanthodiumParasenecio complex (Asteraceae) triggered by uplift of the Qinghai–Tibetan Plateau. Mol Phylogen Evol 38:31–49CrossRefGoogle Scholar
  24. Lock JM (2005) Tribe Hedysareae. In: Lewis G, Schrire B, MacKinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 489–495Google Scholar
  25. Meng LH, Yang R, Abbott RJ, Miehe G, Liu JQ (2007) Mitochondrial and chloroplast phylogeography of Picea crassifolia Kom. (Pinaceae) in the Qinghai–Tibetan Plateau and adjacent highlands. Mol Ecol 16:4128–4137CrossRefPubMedGoogle Scholar
  26. Molnar P, England P, Martiod J (1993) Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon development. Rev Geophy 34:357–396CrossRefGoogle Scholar
  27. Moore RJ (1968) Chromosome numbers and phylogeny in Caragana (Leguminosae). Can J Bot 46:1513–1522CrossRefGoogle Scholar
  28. Nie ZL, Wen J, Azuma H, Qiu YL, Sun H, Meng Y, Sun WB, Zimmer EA (2008) Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol Phylogen Evol 48:1027–1040CrossRefGoogle Scholar
  29. Night JE, Reed DL (2009) Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura). Mol Phylogen Evol 50:376–390CrossRefGoogle Scholar
  30. Nylander JA (2004) MrModeltest ver 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  31. Peng ZG, Ho SYW, Zhang YG, He SP (2006) Uplift of the Tibetan plateau: evidence from divergence times of glyptosternoid catfishes. Mol Phylogen Evol 39:568–572CrossRefGoogle Scholar
  32. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinfor 14:17–818Google Scholar
  33. Qu YH, Ericson PGP, Lei FM, Li SH (2005) Postglacial colonization of the Tibetan plateau inferred from the matrilineal genetic structure of the endemic red-necked snow finch, Pyrgilauda ruficollis. Mol Ecol 6:1767–1781CrossRefGoogle Scholar
  34. Quade J, Cerling TE (1995) Expansion of C4 grasses in the Late Miocene of Northern Pakistan: evidence from stable isotopes in paleosols. Palaeogeo Palaeoclima Palaeoecol 115:91–116CrossRefGoogle Scholar
  35. Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163–165CrossRefGoogle Scholar
  36. Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trend Plant Sci 10:550–558CrossRefGoogle Scholar
  37. Renner SR, Grimm GW, Schneewei GM, Stuessy TF, Ricklefs RE (2008) Rooting and dating maples (Acer) with an uncorrelated-rates molecular clock: implications for North American/Asian disjunctions. Syst Biol 57:795–808CrossRefPubMedGoogle Scholar
  38. Sanchir C (1979) Genus Caragana Lam., systematics, geography, phylogeny and economic significance in study on flora and vegetation of P. R. Mongolia, vol 1. Academic Press, Ulan BatorGoogle Scholar
  39. Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109PubMedGoogle Scholar
  40. Shi YF, Tang MC, Ma YZ (1998) The relation of second rising in Qinghai-Xizang Plateau and Asia Monsoon. Sci China D 28:263–271Google Scholar
  41. Shi YF, Li JJ, Li BY et al (1999) Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geogr Sin 54:10–21Google Scholar
  42. Spicer RA, Harris NBW, Widdowson M et al (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624CrossRefPubMedGoogle Scholar
  43. Tao JR (1992) The Tertiary vegetation and flora and floristic regions in China. Acta Phytotax Sin 31:25–43Google Scholar
  44. Verboom GA, Archibald JK, Bakker FT et al (2009) Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both? Mol Phylogen Evol 51:44–53CrossRefGoogle Scholar
  45. Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA (2008) The age of the grasses and clusters of origins of C4 photosynthesis. Global Change Biol 14:2963–2977CrossRefGoogle Scholar
  46. Wang AL, Yang MH, Liu JQ (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the Rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot 96:489–498CrossRefPubMedGoogle Scholar
  47. Wang YJ, Li XJ, Hao G, Liu JQ (2004) Molecular phylogeny and biogeography of Androsace (Primulaceae) and the convergent evolution of cushion morphology. Acta Phytotax Sin 42:481–499Google Scholar
  48. Wang YJ, Liu JQ, Miehe G (2007) Phylogenetic origins of the Himalayan endemic Dolomiaea, Diplazoptilon and Xanthopappus (Asteraceae: Cardueae) based on three DNA regions. Ann Bot 99:311–322CrossRefPubMedGoogle Scholar
  49. Wang YJ, Susanna A, von Raab-Straube E, Milne M, Liu JQ (2009a) Island-like radiation of Saussurea (Asteraceae: Cardueae) triggered by uplifts of the Qinghai–Tibetan Plateau. Biol J Linn Soc 97:893–903CrossRefGoogle Scholar
  50. Wang LY, Abbott R, Zheng W, Cheng P, Wang YJ, Liu JQ (2009b) History and evolution of alpine plants endemic to the Qinghai–Tibetan Plateau: Aconitum gymnandrum (Ranunculaceae). Mol Ecol 18:709–721CrossRefPubMedGoogle Scholar
  51. Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trend Ecol Evol 20:320–327CrossRefGoogle Scholar
  52. Wilson GDF, Humphrey CL, Colgan DJ, Gray K, Johnson RN (2009) Monsoon influenced speciation patterns in a species flock of Eophreatoicus Nicholls (Isopoda; Crustacea). Mol Phylogen Evol 51:349–364CrossRefGoogle Scholar
  53. Wojciechowski MF (2005) Astragalus (Fabaceae): a molecular phylogenetic perspective. Brittonia 57:382–396CrossRefGoogle Scholar
  54. Zhang ML (1997a) The geographic distribution of the genus Caragana in Qinghai-Xizang Plateau and Himalayas. Acta Phytotax Sin 35:136–147Google Scholar
  55. Zhang ML (1997b) A reconstructing phylogeny in Caragana (Fabaceae). Acta Bot Yunnan 19:331–341Google Scholar
  56. Zhang ML (1998) A preliminary analytic biogeography in Caragana (Fabaceae). Acta Bot Yunnan 20:1–11Google Scholar
  57. Zhang ML (2004) Ancestral area analysis of the genus Caragara (Leguminosae). Acta Bot Sin 46:253–258Google Scholar
  58. Zhang ML (2005) A dispersal and vicariance analysis of the genus Caragana Fabr. J Integ Pl Biol 47:897–904CrossRefGoogle Scholar
  59. Zhang Q, Chiang TY, George M, Liu JQ, Abbott RJ (2005) Phylogeography of the Qinghai–Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Mol Ecol 14:3513–3524CrossRefPubMedGoogle Scholar
  60. Zhang P, Papenfuss TJ, Wake MH, Qu LH, Wake DB (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogen Evol 49:586–597CrossRefGoogle Scholar
  61. Zhang ML, Fritsch PW, Cruz BC (2009a) Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnS-trnG, and ITS. Mol Phylogen Evol 50:547–559CrossRefGoogle Scholar
  62. Zhang XL, Wang XJ, Ge XJ, Yuan YM, Yang HL, Liu JQ (2009b) Molecular phylogeny and biogeography of Gentiana sect. Cruciata (Gentianaceae) based on four chloroplast DNA data sets. Taxon 58:862–870Google Scholar
  63. Zhao YZ (1993) Taxonomic study of the genus Caragana from China. Acta Sci Nat Univ NeiMong 24:631–653Google Scholar
  64. Zhong DL, Ding L (1996) The uplifting process and mechanism of Qinghai-Xizang (Tibet) Plateau. Sci China D 26:289–295Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Key Laboratory of Biogeography and Bioresource in Arid LandXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
  2. 2.State Key Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, Chinese Academy of SciencesBeijingChina
  3. 3.Department of BotanyCalifornia Academy of SciencesSan FranciscoUSA

Personalised recommendations