Advertisement

Plant Systematics and Evolution

, Volume 288, Issue 3–4, pp 149–156 | Cite as

Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization

  • Cheng Liu
  • Guang-Rong Li
  • Sunish Kumar Sehgal
  • Ju-Qing Jia
  • Zu-Jun Yang
  • Bernd Friebe
  • Bikram Gill
Original Article

Abstract

The genus Dasypyrum (or Haynaldia) consists of two species, D. villosum and D. breviaristatum. However, the genomic relationships between these two species remain unclear. The objective of this study was to provide molecular phylogenic and cytological evidence on the evolutionary relationships of the genus Dasypyrum. Sequences of Chloroplast DNA (cpDNA) and α-gliadin genes both support the hypothesis that diploid D. breviaristatum is the progenitor of tetraploid D. breviaristatum, and the diploid D. villosum and D. breviaristatum evolved parallel from an ancestral species. Genomic and fluorescence in situ hybridization using ribosomal DNA and rye repetitive DNA sequence as probes also indicated that tetraploid D. breviaristatum originated from diploid D. breviaristatum.

Keywords

Dasypyrum Evolutionary relationships FISH GISH α-Gliadin gene family 

Notes

Acknowledgments

We thank the National Natural Science Foundation of China (No. 30671288, 30871518) and Chinese Ministry of Education (NCET-06-0810) for financial support. We particularly thank Dr. Shoji Ohta, W. Jon Raupp and the NPGS for kindly providing seeds. This research was also supported by grants from the Kansas Wheat Commission and the Kansas Crop Improvement Association. This paper is contribution no. 10-267-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, 66506-5502.

References

  1. Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I. characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet 95:50–58CrossRefGoogle Scholar
  2. Bai LL, Yang ZJ, Liu C, Feng J, Deng KJ, Ren ZL (2007) Structural and transcriptional polymorphism of mitochondrial rrn18-trmfM region in Triticeae species. Acta Agron Sinica 33:805–813Google Scholar
  3. Bedbrook JR, Jones J, O’Dell M, Thompson R, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560CrossRefPubMedGoogle Scholar
  4. Blanco A, Simeone R, Resta P, De Pace C, Delre V, Caccia R, Scarascia Mugnozza GT, Frediani M, Cremonini R, Cionini PG (1996) Genomic relationships between Dasypyrum villosum (L.) Candargy and D. hordeaceum (Cosson et Durieu) Candargy. Genome 39:83–92CrossRefPubMedGoogle Scholar
  5. Chen PD, Qi LL, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128CrossRefGoogle Scholar
  6. De Pace C, Deler V, Scarascia Mugnozza GT, Qualset CO, Cermonini R, Frediani M, Cionini PG (1992) Molecular and chromosomal characterization of repeated and single-copy DNA sequences in the genome of Dasypyrum villosum. Hereditas 116:55–65Google Scholar
  7. De Pace C, Snidaro D, Ciaffi M, Vittori D, Ciofo A, Cenci A, Tanzarella OA, Qualset CO, Scarascia Mugnozza GT (2001) Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica 117:67–75CrossRefGoogle Scholar
  8. Felsenstein J (1993) PHYLIP: phylogeny inference package, version 3.5. University of Washington, Seattle, WA (http://evolution.genetics.washington.edu/phylip.html)
  9. Frederiksen S (1991) Taxonomic studies in Dasypyrum (Poaceae). Nord J Bot 11:135–142CrossRefGoogle Scholar
  10. Galasso I, Blanco A, Katsiotis A, Pignone D, Heslop-Harrison JS (1997) Genomic organization and phylogenetic relationships in the genus Dasypyrum analyzed by Southern and in situ hybridization of total genomic and cloned DNA probes. Chromosoma 106:53–61CrossRefPubMedGoogle Scholar
  11. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885CrossRefPubMedGoogle Scholar
  12. Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedGoogle Scholar
  13. Jauhar PP, Joppa LR (1996) Chromosome pairing as a tool in genome analysis: merits and limitations. In: Jauhar PP (ed) Methods of genome analysis in plants. CRC Press, Boca Raton (FL), pp 9–37Google Scholar
  14. Li WL, Chen PD, Qi LL, Liu DJ (1995) Isolation, characterization and application of a species-specific repeated sequence from Haynaldia villosa. Theor Appl Genet 90:526–533CrossRefGoogle Scholar
  15. Li GR, Liu C, Zeng ZX, Jia JQ, Zhang T, Zhou JP, Ren ZL, Yang ZJ (2009) Identification of α-gliadin genes in Dasypyrum in relation to evolution and breeding. Euphytica 165:155–163CrossRefGoogle Scholar
  16. Liao JQ, Yang RW, Zhou YH, Tsujimoto H (2007) FISH analysis of 45S and 5S rDNA genes in Triticum polonicum L. and T. turgidum L. cv. Ailanmai. Hereditas 29:449–454PubMedGoogle Scholar
  17. Linde-Laursen L, Frederiksen S (1991) Comparison of the Giemsa C-band karyotype of Dasypyrum villosum and D. breviaristatum (4×) from Greece. Hereditas 114:237–244CrossRefGoogle Scholar
  18. Liu C, Li GR, Yang ZJ, Feng J, Zhou JP, Ren ZL (2006a) Isolation and application of specific DNA segment of rye genome. Acta Bot Boreal Occident Sin 26:2434–2438Google Scholar
  19. Liu C, Yang ZJ, Li GR, Feng J, Deng KJ, Huang J, Ren ZL (2006b) Sequence variation of chloroplast gene infA-rp136 region occurred in some Triticeae species. Hereditas 28:1265–1272PubMedGoogle Scholar
  20. Liu C, Li GR, Yang ZJ, Feng J, Zhou JP, Ren ZL (2007) A discussion on genetic relationship in genome between Thinopyrum and Dasypyrum. High Technol Lett 17:295–300Google Scholar
  21. Löve A (1984) Conspectus of the triticeae. Feddes Rep 95:425–521Google Scholar
  22. Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Gray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA form chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658CrossRefPubMedGoogle Scholar
  23. Moore G, Devos KM, Wang Z, Gale MD (1995) Grass, line up and form a circle. Curr Biol 7:737–739CrossRefGoogle Scholar
  24. Murray TD, De la Pena RC, Yildirim A, Jones SS (1994) A new source of resistance to Pseudocercosporella herpotrichoides cause of eyespot disease of wheat located on chromosome 4 V of Dasypyrum villosum. Plant Breed 113:281–286CrossRefGoogle Scholar
  25. Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata N, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl Acids Res 33:6235–6250CrossRefPubMedGoogle Scholar
  26. Ohta S, Morishita M (2001) Genome relationships in the genus Dasypyrum (Gramineae). Hereditas 135:101–110CrossRefPubMedGoogle Scholar
  27. Ohta S, Zine Elabidine F, Morikawa I, Tominaga T, Mellas H, Furuta Y (1997) Report on a cooperative cereal germplasm collection mission in Morocco. Al Awamia 97:51–64Google Scholar
  28. Ohta S, Koto M, Osada T, Matsuyama A, Furuta Y (2002) Rediscovery of a diploid cytotype of Dasypyrum breviaristatum in Morocco. Genet Res Crop Evol 49:305–312CrossRefGoogle Scholar
  29. Sando WJ (1935) Intergeneric hybrids of Triticum and Secale with Haynaldia villosa. J Agric Res 51:579–800Google Scholar
  30. Sarkar P (1957) A new diploid form of Haynaldia hordeacea Hack. Wheat Inf Serv 6:22Google Scholar
  31. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  32. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680CrossRefPubMedGoogle Scholar
  33. Uslu E, Miller TE, Rezanoor NA, Nicholson PN (1998) Resistance of Dasypyrum villosum to the cereal eyespot pathogens, Tapesia yallundae and Tapesia acuformis. Euphytica 103:203–209CrossRefGoogle Scholar
  34. Uslu E, Reader SM, Miller TE (1999) Characterization of Dasypyrum villosum (L.) Candargy chromosomes by fluorescent in situ hybridization. Hereditas 131:129–134CrossRefGoogle Scholar
  35. van Herpen TW, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJ, Vosman B, Bosch D, Hamer RJ, Gilissen LJ, Smulders MJ (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1–13CrossRefPubMedGoogle Scholar
  36. von Bothmer R, Claesson L (1990) Production and meiotic pairing of intergenetic hybrids of Triticum × Dasypyrum species. Euphytica 51:109–117Google Scholar
  37. Wilson J (2009) Production of wheat-Haynaldia villosa Robertsonian chromosomal translocations, MS Thesis, Department of Plant Pathology, Kansas State University, 49 ppGoogle Scholar
  38. Xu CM, Bie TD, Wang CM, Zhou B, Chen PD (2007) Distribution of 45S rDNA sequence on chromosomes of Triticum aestivum and its relative species. Hereditas 29:1126–1130PubMedGoogle Scholar
  39. Yang ZJ, Feng J, Zhou JP, Liu C, Ren ZL (2005) Identification of Dasypyrum breviaristatum chromatin in wheat background by in situ hybridization. Southwest China J Agric Sci 18:608–611Google Scholar
  40. Yang ZJ, Liu C, Feng J, Li GR, Zhou JP, Deng KJ, Ren ZL (2006) Studies on genomic relationship and speciWc marker of Dasypyrum breviaristatum in Triticeae. Hereditas 143:47–54CrossRefPubMedGoogle Scholar
  41. Yang ZJ, Zhang T, Liu C, Li GR, Zhou JP, Zhang Y, Ren ZL (2008) Identification of wheat-Dasypyrum breviaristatum addition lines with stripe rust resistance using C-banding and genomic in situ hybridization. In: Appels R, Eastwood E, Lagudah E, Langridge P, Mackay M (eds) Proceedings of 11th international wheat genet symposium, Sydney University Press. http://ses.library.usyd.edu.au/handle/2123/3272
  42. Yildirim A, Jones SS, Murray TD (1998) Mapping a gene conferring resistance to Pseudocercosporella herpotrichoides on chromosome 4 V of Dasypyrum in a wheat background. Genome 41:1–6CrossRefGoogle Scholar
  43. Yuan WY, Tomita M (2009) Centromeric distribution of 350-family in Dasypyrum villosum and its application to identifying Dasypyrum chromatin in the wheat genome. Hereditas 146:58–66CrossRefPubMedGoogle Scholar
  44. Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344CrossRefPubMedGoogle Scholar
  45. Zhang P, Friebe B, Gill BS (2002) Variation in the distribution of a genome-specific DNA sequence on chromosomes reveals evolutionary relationships in the Triticum and Aegilops complex. Plant Syst Evol 235:169–179CrossRefGoogle Scholar
  46. Zhang QP, Li Q, Wang XE, Lang SP, Wang YN, Wang SL, Chen PD, Liu DJ (2005) Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS.4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica 145:317–320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Cheng Liu
    • 1
    • 2
  • Guang-Rong Li
    • 1
  • Sunish Kumar Sehgal
    • 2
  • Ju-Qing Jia
    • 1
  • Zu-Jun Yang
    • 1
  • Bernd Friebe
    • 2
  • Bikram Gill
    • 2
  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences CenterKansas State UniversityManhattanUSA

Personalised recommendations