Advertisement

Plant Systematics and Evolution

, Volume 287, Issue 3–4, pp 119–127 | Cite as

Karyological circumscription of Ipheion Rafinesque (Gilliesioideae, Alliaceae)

  • Luiz Gustavo Rodrigues Souza
  • Orfeo Crosa
  • Marcelo Guerra
Original Article

Abstract

Ipheion Rafinesque is a small genus formed by I. uniflorum (2n = 12, 2SM + 10A), I. tweedieanum (2n = 14A), and I. recurvifolium (2n = 20, 4SM + 16A). Three species of Nothoscordum, N. felipponei, N. hirtellum, and N. vittatum (2n = 10, 6M + 4A), were also later transferred to Ipheion based on the common presence of unifloral inflorescence. Karyotype analysis of the five former species was performed in this work, aiming to evaluate the circumscription of the genus. This analysis was based on chromosome size and morphology, asymmetry index, staining with chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI), and in situ hybridization with 5S and 45S rDNA probes. Tetraploid populations of I. uniflorum, probably autopolyploids of recent origin, with karyotype similar to the diploids, are described herein for the first time. Grouping analyses of the several sets of characters analyzed show the former three Ipheion species clearly separated from the Nothoscordum ones, which were more proximally related to other Nothoscordum species. Chromosome size, asymmetry indices, and number and position of 5S and 45S rDNA sites were the most important karyotype characters to define the genus Ipheion. These data indicate that the unifloral species of Nothoscordum belong to Nothoscordum and not to Ipheion, and the “unifloral inflorescence” should be a homoplasy common to both genera.

Keywords

Chromosomes rDNA sites CMA+ bands Ipheion Nothoscordum Tribe Ipheieae 

Notes

Acknowledgments

The authors wish to thank the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Ciência e Tecnologia de Pernambuco (FACEPE) for financial support and a grant to L.G.R.S. by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

References

  1. Baeza C, Schrader O, Budahn H (2007) Characterization of geographically isolated accessions in five Alstroemeria L. species (Chile) using FISH of tandely repeated DNA sequences and RAPD analysis. Plant Syst Evol 269:1–14CrossRefGoogle Scholar
  2. Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125CrossRefPubMedGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95:1–6CrossRefPubMedGoogle Scholar
  4. Crosa O (1972) Estudios cariología en el género Nothoscordum (Liliaceae). Bol Fac Agr Uruguay 122:3–8Google Scholar
  5. Crosa O (1975) Las species unifloras del género Nothoscordum Kunth y el género Ipheion Rafinesque de la tribu Allieae (Liliaceae). Darwiniana 19:335–344Google Scholar
  6. Crosa O (1981) Los cromosomas de cinco especies del género Tristagma (Liliaceae). Darwiniana 23:361–366Google Scholar
  7. Crosa O (1988) Los cromosomas de nueve especies del género chileno Leucocoryne Lindly, (Allieae-Alliaceae). Bol Fac de Agronomía Uruguay Invest 17:1–12Google Scholar
  8. Crosa O (2004) Segunda especie y justificación del género Zoellnerallium (Alliaceae). Darwiniana 42:165–168Google Scholar
  9. Crosa O (2006) Nothoscordum izaguirreae, nueva espécie uniflora de Alliaceae de Uruguay. Hickenia 61:271–275Google Scholar
  10. Crosa O, Marchesi E (2002) Presencia de Ipheion tweedieanum (Baker) Traub (Alliaceae) em Uruguay. Agrociencia 6:92–97Google Scholar
  11. Dierschke T, Mandáková T, Lysak MA, Mummenhoff K (2009) A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann Bot 104:681–688CrossRefPubMedGoogle Scholar
  12. Do GS, Seo BB, Yamamoto M, Mukai Y (2001) Identification and chromosomal location of tandemly repeated DNA sequences in Allium cepa. Genes Genet Syst 76:53–60CrossRefPubMedGoogle Scholar
  13. Fay MF, Chase M (1996) Resurrection of Themidaceae for the Brodiaea alliance, and recircumscription of Alliaceae, Amaryllidaceae and Agapanthoideae. Taxon 45:441–451CrossRefGoogle Scholar
  14. Fay MF, Rudall PJ, Chase M (2006) Molecular studies of subfamily Gilliesioideae (Alliaceae). Aliso 22:367–371Google Scholar
  15. Guaglianone EA (1972) Sinopsis de las especies de Ipheion Raf. y Nothoscordum Kunth (Liliáceas) de Entre Rios y regiones vecinas. Darwiniana 17:159–240Google Scholar
  16. Guerra M (1986) Reviewing the chromosome nomenclature of Levan et al. Braz J Genet 9:21–40Google Scholar
  17. Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Gen Res 120:339–350CrossRefGoogle Scholar
  18. Guerra M, Felix LP (2000) O cariótipo de Nothoscordum pulchellum (Alliaceae) com ênfase na heterocromatina e sítios de DNAr. Bol Soc Argentina Bot 35:283–289Google Scholar
  19. Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422CrossRefPubMedGoogle Scholar
  20. Jones K (1998) Robertsonian fusion and centric fission in karyotype evolution of higher plants. Bot Rev 64:273–289CrossRefGoogle Scholar
  21. Kim ES, Punina EO, Rodionov AV (2002) Chromosome CPD (PI/DAPI)- and CMA/DAPI-banding patterns in Allium cepa L. Russ J Genet 38:392–398CrossRefGoogle Scholar
  22. Kovarik A, Devejova M, Lim YK, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicociana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot 101:815–823CrossRefPubMedGoogle Scholar
  23. Lee SH, Do GS, Seo BB (1999) Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex. Chromosome Res 7:89–93CrossRefPubMedGoogle Scholar
  24. Meric C, Dane F (2005) Determination of ploidy levels in Ipheion uniflorum (R. C. Graham) Rafin (Liliaceae). Acta Biol Hung 56:129–136CrossRefPubMedGoogle Scholar
  25. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  26. Romero Zarco C (1986) A new method for estimating karyotype asymmetry. Taxon 35:526–530CrossRefGoogle Scholar
  27. Sato S, Kuroki Y, Ohta S (1979) Two types of color-differentiated C-banding positive segments in chromosomes of Nothoscordum fragrans, Liliaceae. Cytologia 44:715–725Google Scholar
  28. Schubert I (2007) Chromosome evolution. Curr Opin Plant Biol 10:109–115CrossRefPubMedGoogle Scholar
  29. Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297CrossRefGoogle Scholar
  30. Souza LGR, Crosa O, Guerra M (2009) The karyotype of Nothoscordum arenarium Herter (Gilliesioideae, Alliaceae): a populational and cytomolecular analysis. Genet Mol Biol 32:111–116Google Scholar
  31. Tagashira N, Kondo K (2001) Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst Evol 227:145–155CrossRefGoogle Scholar
  32. Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luiz Gustavo Rodrigues Souza
    • 1
  • Orfeo Crosa
    • 2
  • Marcelo Guerra
    • 3
  1. 1.Laboratory of Plant Cytogenetics, Department of Botany, CCBFederal University of PernambucoRecifeBrazil
  2. 2.Laboratory of Genetics, Department of Plant Biology, Faculty of AgronomyUniversity of the RepublicMontevideoUruguay
  3. 3.Laboratório de Citogenética Vegetal, Departamento de Botânica, Centro de Ciências BiológicasUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations