Plant Systematics and Evolution

, Volume 286, Issue 3–4, pp 223–234 | Cite as

Post-pollination barriers do not explain the persistence of two distinct Antirrhinum subspecies with parapatric distribution

  • C. Andalo
  • M. B. Cruzan
  • C. Cazettes
  • B. Pujol
  • M. Burrus
  • C. Thébaud
Original Article


Empirical studies of post-pollination barriers to gene flow between recently diverged plant species are important to understand ecological processes underlying speciation. Using greenhouse and common garden experiments, we investigated the strength of post-pollination barriers that restrict or prevent gene flow between two subspecies of Antirrhinum: Antirrhinum majus pseudomajus and A. m. striatum. The two are distributed parapatrically but share the same major pollinators (bumblebees), and form narrow hybrid zone in many areas of southern France and northern Spain where they come into close contact. We assessed the strength and symmetry of mating barriers and their homogeneity among populations by comparing fruit set, seed set and offspring performances between intra- and inter-subspecific crosses performed in parental and hybrid populations. Although all populations showed high levels of self-incompatibility, we found very little evidence for barriers to gene flow once pollen had been transferred to the stigma. We suggest that reproductive isolation in this system mostly involves barriers related to processes occurring before pollination, with little or no role of post-pollination barriers.


Antirrhinum Hybridization Pollinator sharing Post-pollination barriers Reproductive isolation 



We thank L. Mantione, E. Lance, E. Beaudoin, V. Manchon, F. Andalo, E. Tastard, N. Norden, F. Jabot and D. Guery for assistance with crosses, measurements and plant culture; and J. Clobert for permission to work at the CNRS field station in Moulis. We are also grateful to D. Rosenthal, H. de Glanville, P. Sochacki, J. Picotte, L. Copsey, M. Dufaÿ and D. Mckey for constructive comments on a previous draft of the manuscript.


  1. Aldridge G, Campbell DR (2007) Variation in pollinator preference between two Ipomopsis contact sites that differ in hybridization rate. Evolution 61:99–110CrossRefPubMedGoogle Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  3. Banovetz SJ, Scheiner SM (1994) The effects of seed mass and the seed ecology of Coreopsis lanceolata. Am Midl Nat 131:65–74CrossRefGoogle Scholar
  4. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefPubMedGoogle Scholar
  5. Campbell DR, Waser NM (2001) Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution 55:669–676CrossRefPubMedGoogle Scholar
  6. Campbell DR, Waser NM, Pederson GT (2002) Predicting patterns of mating and potential hybridization from pollinator behavior. Am Nat 159:438–450CrossRefPubMedGoogle Scholar
  7. Chittka L, Gumbert A, Kunze J (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behav Ecol 8:239–249CrossRefGoogle Scholar
  8. Clausen J (1951) Stages in the evolution of plant species. Cornell University Press, New YorkGoogle Scholar
  9. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  10. De Nettancourt D (1977) Incompatibility in angiosperms. Springer-Verlag, BerlinGoogle Scholar
  11. Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  12. East EM (1940) The distribution of self-fertility in the flowering plants. Proc Am Philos Soc 82:449–517Google Scholar
  13. Fenner M (1985) Seed ecology. Chapman and Hall, New YorkGoogle Scholar
  14. Fox J (2002) An R and S-plus Companion to applied regression. Sage, LondonGoogle Scholar
  15. Gegear RJ, Laverty TM (2005) Flower constancy in bumblebees: a test of the trait variability hypothesis. Anim Behav 69:939–949CrossRefGoogle Scholar
  16. Grant V (1992) Floral isolation between ornithophilous and sphingophilous species of Ipomopsis and Aquilegia. Proc Natl Acad Sci USA 89:11828–11831CrossRefPubMedGoogle Scholar
  17. Harder LD, Cruzan MB, Thompson JD (1993) Unilateral incompatibility and the effects of interspeccific pollination for Erythronium americanum and Erythronium albidum (Liliaceae). Can J Bot 71:353–358CrossRefGoogle Scholar
  18. Hodges SA, Burke JM, Arnold ML (1996) Natural formation of Iris hybrids: experimental evidence on the establishment of hybrid zones. Evolution 50:2504–2509CrossRefGoogle Scholar
  19. Ippolito AG, Fernandes W, Holtsford TP (2004) Pollinator preferences for Nicotiana alata, N. forgetiana, and their F1 hybrids. Evolution 58:2634–2644Google Scholar
  20. Johnston JA, Grise DJ, Donovan LA, Arnold ML (2001) Environment-dependent performance and fitness of Iris brevicaulis, I. Fulva (Iridaceae), and hybrids. Am J Bot 88:933–938CrossRefPubMedGoogle Scholar
  21. Jones KN, Reithel J (2001) Pollinator-mediated selection on flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454CrossRefGoogle Scholar
  22. Langlade NB, Feng X, Dransfield T, Copsey L, Hanna AI, Thébaud C, Bangham A, Hudson A, Coen E (2005) Evolution through genetically controlled allometry space. Proc Natl Acad Sci USA 102:10221–10226CrossRefPubMedGoogle Scholar
  23. Levin DA (1971) The origin of reproductive isolating mechanisms in flowering plants. Taxon 20:91–113CrossRefGoogle Scholar
  24. Levin DA (1978) The origin of isolating mechanisms in flowering plants. In: Hecht MK, Steere WC, Wallace B (eds) Evolutionary Biology, vol II. Appleton Century Crofts, New York, pp 185–317Google Scholar
  25. Lewis D, Crowe LK (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–256CrossRefGoogle Scholar
  26. Lloret F, Casanovas C, Penuelas J (1999) Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct Ecol 13:210–216CrossRefGoogle Scholar
  27. Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629CrossRefGoogle Scholar
  28. Mable BK (2004) Polyploidy and self-compatibility: is there an association? New Phytol 162:803–811CrossRefGoogle Scholar
  29. Mateu-Andrés I, Segarra-Moragues JG (2004) Reproductive system in the Iberian endangered endemic Antirrhinum valentinum F.Q. (Antirrhineae, Scrophulariaceae): consequences for species conservation. Int J Plant Sci 165:773–778CrossRefGoogle Scholar
  30. Mather K (1947) Species crosses in Antirrhinum. I. Genetic isolation of the species majus, glutinosum and orontium. Heredity 1:175–186CrossRefGoogle Scholar
  31. Ramsey J, Bradshaw HD, Schemske DW (2003) Components of reproductive isolation between the monkeyflowers Mimulus lewisii and Mimulus cardinalis (Phrymaceae). Evolution 57:1520–1534PubMedGoogle Scholar
  32. Rhode JM, Cruzan MB (2005) Contribution of heterosis and epistasis to hybrid fitness. Am Nat 166:E124–E139CrossRefPubMedGoogle Scholar
  33. Rothmaler W (1956) Taxonomische Monographie der Gattung Antirrhinum. Akademie-Verlag, BerlinGoogle Scholar
  34. SAS (2000) SAS OnlineDoc® (Version 8). SAS institute, CaryGoogle Scholar
  35. Sokal RR, Rohlf JF (1995) Biometry, 3rd edn. WH Freeman, New YorkGoogle Scholar
  36. Tastard E, Andalo C, Giurfa M, Burrus M, Thébaud C (2008) Flower colour variation across a hybrid zone in Antirrhinum as perceived by bumblebee pollinators. Arthropod Plant Interact 2:237–246CrossRefGoogle Scholar
  37. Thompson DM (1988) Systematics of Antirrhinum (Scrophulariaceae) in the New World. Syst Bot Monogr 22:1–142Google Scholar
  38. Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond 268:861–867CrossRefGoogle Scholar
  39. Torres E, Iriondo JM, Pérez C (2002) Vulnerability and determinant of reproductive success in the narrow endemic Antirrhinum microphyllum (Scrophulariaceae). Am J Bot 89:1171–1179CrossRefGoogle Scholar
  40. Venables WN, Ripley BD (1999) Modern Applied Statistics with S-Plus, 3rd edn. Springer, New YorkGoogle Scholar
  41. Waser NM (2006) Specialization and generalization in plant-pollinator interactions: a historical perspective. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions: from specialization to generalization. The University of Chicago Press, Chicago, pp 3–17Google Scholar
  42. Waser NM, Chittka L, Price MV, Williams N, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:279–296Google Scholar
  43. Westoby M, Jurado E, Leishman M (1992) Comparative evolutionary ecology of seed size. Trends Ecol Evol 7:368–372CrossRefGoogle Scholar
  44. Whibley AC, Langlade NB, Andalo C, Hanna AI, Bangham A, Thébaud C, Coen E (2006) Evolutionary paths underlying flower color variation in Antirrhinum. Science 313:963–966CrossRefPubMedGoogle Scholar
  45. Zwettler D, Vieira CP, Schlötterer C (2002) Polymorphic microsatellites in Antirrhinum (Scrophulariaceae), a genus with low levels of nuclear sequence variability. J Hered 93:217–221CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • C. Andalo
    • 1
  • M. B. Cruzan
    • 2
  • C. Cazettes
    • 1
  • B. Pujol
    • 1
  • M. Burrus
    • 1
  • C. Thébaud
    • 1
  1. 1.Laboratoire Evolution et Diversité BiologiqueUMR 5174 CNRS-Université Paul SabatierToulouse Cedex 9France
  2. 2.Department of BiologyPortland State UniversityPortlandUSA

Personalised recommendations