Plant Systematics and Evolution

, Volume 287, Issue 3–4, pp 113–118 | Cite as

Cytological differentiation between the two subgenomes of the tetraploid Emilia fosbergii Nicolson and its relationship with E. sonchifolia (L.) DC. (Asteraceae)

Original Article

Abstract

The diploid Emila sonchifolia (2n = 10) and the tetraploid E. fosbergii (2n = 20) species are widely distributed throughout tropical and subtropical America, and are the only two Emilia species occurring in Brazil. Emilia fosbergii displays two sets of ten chromosomes, one slightly larger than the other. The smaller chromosome set is similar to the chromosome complement of the diploid, which agrees with the suggested participation of E. sonchifolia in the formation of E. fosbergii. To elucidate this hypothesis, the relationship between the genomes of the two species was investigated using chromomycin A3 (CMA)/4’,6-diamidino-2-phenylindole (DAPI) double staining, distribution of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH) and whole genome comparison by genomic in situ hybridization (GISH). CMA/DAPI staining and FISH revealed the occurrence of one pair of CMA bands in E. sonchifolia and three pairs in E. fosbergii, all of them co-localized with 45S rDNA sites. Additionally, E. fosbergii displayed a fourth, small 45S rDNA site in its larger subgenome which was not detected as CMA band. Surprisingly, the euchromatin of the smaller subgenome of E. fosbergii stained less intensely with CMA than the larger one. The GISH procedure demonstrated the similarity between the genome of E. sonchifolia and the smaller chromosome set of E. fosbergii. GISH and CMA staining clearly demonstrate that E. fosbergii is an allotetraploid species and suggest E. sonchifolia as one of its ancestors. The maintenance of at least one pair of 5S and 45S rDNA sites per subgenome of E. fosbergii and the differentiation between its subgenomes by CMA staining seem to indicate that post-polyploidization changes are still incipient, probably because the polyploidization event and the origin of E. fosbergii were relatively recent.

Keywords

Emilia fosbergii Emilia sonchifolia CMA bands Heterochromatin rDNA sites GISH 

References

  1. Almeida CCS, Carvalho PCL, Guerra M (2007) Karyotype differentiation among Spondias species and the putative hybrid Umbu-cajá (Anacardiaceae). Bot J Linn Soc 155:541–547Google Scholar
  2. Ansari HA, Ellison NW, Williams WM (2008) Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae). Chromosoma 117:159–167CrossRefPubMedGoogle Scholar
  3. Baldwin JT Jr (1946) Cytogeography of Emilia Cass. in the Americas. Bull Torrey Bot Club 73:18–23CrossRefGoogle Scholar
  4. Baldwin JT Jr, Speese BM (1949) Cytogeography of Emilia in West Africa. Bull Torrey Bot Club 76:346–351CrossRefGoogle Scholar
  5. Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125CrossRefPubMedGoogle Scholar
  6. Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43:1021–1026CrossRefPubMedGoogle Scholar
  7. Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature on Milium montianum (Gramineae). Chromosoma 101:420–424CrossRefGoogle Scholar
  8. Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Benko-Iseppon AM, Guerra M (2005) Molecular cytogenetic characterization of parental genomes in the partial amphidiploid Triticum aestivum × Thinopyrum ponticum. Genet Mol Biol 28:308–313CrossRefGoogle Scholar
  9. Coleman JR, Campello ML (1984) Cytogenetics of a mixed Brazilian population of Emilia sonchifolia (L.) DC and E. coccinea (Sims.) G. Don. (Compositae). Braz J Genet 1:83–94Google Scholar
  10. D’Hont A, Paget-Goy A, Escoute J, Carrel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183CrossRefGoogle Scholar
  11. Doyle JJ, Doyle JV (1987) A rapid DNA isolation procedure for small amounts of leaf tissue. Phytochem Bull 19:810–815Google Scholar
  12. Guerra MS, Nogueira MT (1990) The cytotaxonomy of Emilia spp. (Asteraceae: Senecioneae) occurring in Brazil. Plant Syst Evol 170:229–236CrossRefGoogle Scholar
  13. Hall AE, Kettler GC, Preus D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364CrossRefPubMedGoogle Scholar
  14. Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154CrossRefPubMedGoogle Scholar
  15. Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173:1007–1021CrossRefPubMedGoogle Scholar
  16. Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the synthetic tobacco. Am J Bot 93:875–883CrossRefGoogle Scholar
  17. Markova M, Michu E, Vyskot B, Janousek B, Zluvova J (2007) An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique. Chromosome Res 15:1051–1059CrossRefPubMedGoogle Scholar
  18. Matoba H, Soejima A, Hoshi Y (2007) Identification of parental genomes and genomic organization in Aster microcephalus var. ovatus. J Plant Res 120:585–593CrossRefPubMedGoogle Scholar
  19. Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 177–216CrossRefGoogle Scholar
  20. Moraes AP, Lemos RR, Brasileiro-Vidal AC, Soares Filho WS, Guerra M (2007) Chromosomal markers distinguish hybrids and non-hybrid accessions of mandarin. Cytogenet Genome Res 119:275–281CrossRefPubMedGoogle Scholar
  21. Nicolson DH (1975) Emilia fosbergii, a new species. Phytologia 32:33–34Google Scholar
  22. Nicolson DH (1980) Summary of cytological information on Emilia and the taxonomy of four Pacific taxa of Emilia (Asteraceae:Senecioneae). Syst Bot 5:391–407CrossRefGoogle Scholar
  23. Olorode O (1973a) Identification of the genomic complements of Emilia praetermissa (Senecioneae–Compositae). Am J Bot 60:55–60CrossRefGoogle Scholar
  24. Olorode O (1973b) Meiotic studies on diploid hybrids between Emilia sonchifolia and E. coccinea (Compositae). Cytologia 38:725–729Google Scholar
  25. Olorode O, Olorunfemi AE (1973) The hybrid origin of Emilia praetermissa (Senecioneae–Compositae). Ann Bot 37:185–191Google Scholar
  26. Parokonny AS, Kenton AY, Meredith L, Owens SJ, Bennett MD (1992) Genomic divergence of allopatric sibling species studied by molecular cytogenetics of their F1 hybrids. Plant J 2:695–704Google Scholar
  27. Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672PubMedGoogle Scholar
  28. Pedrosa-Harand A, de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933CrossRefPubMedGoogle Scholar
  29. Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci 101:18240–18245CrossRefPubMedGoogle Scholar
  30. Vanzela AA, Cuadrado A, Jouve N, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349CrossRefPubMedGoogle Scholar
  31. Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Laboratory of Plant Cytogenetics, Department of BotanyFederal University of PernambucoRecifeBrazil

Personalised recommendations