Plant Systematics and Evolution

, Volume 286, Issue 3–4, pp 191–197 | Cite as

Pollen and ovule production in wind-pollinated species with special reference to Juncus

  • Stefan G. Michalski
  • Walter Durka
Original Article


The reproductive biology of wind-pollinated species in terms of pollen and ovule production is rarely studied compared with zoophilous species, despite available hypotheses on the effect of growth form and life-history traits on reproductive investment. Here, we use published data and new data for species of Juncus and Luzula (Juncaceae) to test the hypotheses that, in wind-pollinated species, woody perennials should exhibit larger pollen–ovule (P/O) ratios than herbaceous species and that species with separate sexes have larger P/O ratios than homoecious species. In total, we report pollen and ovule production for 291 wind-pollinated species, including 19 Juncus and 5 Luzula species. Compared with other wind-pollinated species, Juncus exhibits unusually low P/O ratios (log P/O = 2.06 ± 0.46) because of high ovule production. We argue that the high ovule and seed production in Juncus, associated with frequent self-fertilization, may be beneficial in habitats preferred by the genus. In general, we found higher P/O ratios in woody perennials (log P/O = 4.37 ± 1.18) or in species with separate sexes (log P/O = 4.28 ± 1.12) than in herbaceous (log P/O = 3.51 ± 0.77) or homoecious (log P/O = 3.52 ± 0.80) species, respectively. However, when we analyzed woody perennials separately, we found no significant difference in P/O ratios between homoecious and nonhomoecious species. We argue that woody perennials, independent of dicliny, may be preferentially outcrossed and therefore exhibit decreased variation in mating systems compared with herbs. Because the degree of outcrossing correlates with P/O ratios, differences between homoecious and nonhomoecious woody perennials could be less pronounced.


Juncus Juncaceae Wind pollination Pollen–ovule ratios Mating system Life history 

Supplementary material

606_2010_299_MOESM1_ESM.pdf (62 kb)
Supplementary material 1 (PDF 61 kb)


  1. Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Syst Evol 222:167–185CrossRefGoogle Scholar
  2. Agnihotri MS, Singh BP (1975) Pollen production and allergenic significance of some grasses around Lucknow. J Palyn 11:151–154Google Scholar
  3. Alsleben K, Burkart M, Wichmann M (2004) Germination, establishment and spreading of Juncus atratus—a species adapted to disturbances. Verh Ges Ökol 34:243Google Scholar
  4. Andrew R (1984) A practical pollen guide to the British flora. Quaternary Research Association, CambridgeGoogle Scholar
  5. Baker HG (1955) Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9:347–348CrossRefGoogle Scholar
  6. Balslev H (1996) Flora Neotropica: Juncaceae. The New York Botanical Garden, New YorkGoogle Scholar
  7. Buchenau F (1890) Monographia Juncacearum. Bot Jahrb Syst 12:1–495Google Scholar
  8. Buchenau F (1892) Ueber die Bestäubungs-Verhältnisse bei den Juncaceen. Jahrb Wiss Bot 24:363–424Google Scholar
  9. Charlesworth D (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141:481–490CrossRefGoogle Scholar
  10. Charlesworth D, Charlesworth B (1981) Allocation of resources to male and female functions in hermaphrodites. Biol J Linn Soc 15:57–74CrossRefGoogle Scholar
  11. Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 76:2480–2484CrossRefPubMedGoogle Scholar
  12. Cruden RW (1977) Pollen–ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46CrossRefGoogle Scholar
  13. Cruden RW (2000) Pollen grains: why so many? Plant Syst Evol 222:143–165CrossRefGoogle Scholar
  14. Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369CrossRefGoogle Scholar
  15. Edgar E (1964) The leafless species of Juncus in New Zealand. New Zeal J Bot 2:177–204Google Scholar
  16. Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon, OxfordGoogle Scholar
  17. Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58CrossRefGoogle Scholar
  18. Götzenberger L, Durka W, Kühn I, Klotz S (2006) The relationship between the pollen–ovule ratio and seed size: a comparative test of a sex allocation hypothesis. Evol Ecol Res 8:1101–1116Google Scholar
  19. Götzenberger L, Durka W, Kühn I, Klotz S (2007) The relationship between the pollen–ovule ratio and pollen size: another comparative test of a sex allocation hypothesis. Evol Ecol Res 9:1145–1161Google Scholar
  20. Graebner P (1934) Juncaceae. In: Kirchner O, Loew E, Schröter C, Wangerin W (eds) Lebensgeschichte der Blütenpflanzen Mitteleuropas, Band I, Abteilung 3. Eugen Ulmer, Stuttgart, pp 80–221Google Scholar
  21. Harder LD (2000) Pollen dispersal and the floral diversity of monocotyledons. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 243–257Google Scholar
  22. Harder LD, Johnson SD (2008) Function and evolution of aggregated pollen in angiosperms. Int J Plant Sci 169:59–78CrossRefGoogle Scholar
  23. Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344CrossRefGoogle Scholar
  24. Harder LD, Richards SA, Routley MB (2008) Effects of reproductive compensation, gamete discounting and reproductive assurance on mating-system diversity in hermaphrodites. Evolution 62:157–172PubMedCrossRefGoogle Scholar
  25. Honig MA, Linder HP, Bond WJ (1992) Efficacy of wind pollination—pollen load size and natural microgametophyte populations in wind-pollinated Staberoha banksii (Restionaceae). Am J Bot 79:443–448CrossRefGoogle Scholar
  26. Jensen K (2004) Dormancy patterns, germination ecology, and seed-bank types of twenty temperate fen grassland species. Wetlands 24:152–166CrossRefGoogle Scholar
  27. Keighery GJ (1985) Breeding systems of the Wetsern Australian flora IV. Juncus and Luzula (Juncaceae). Bot Jahrb Syst 105:279–283Google Scholar
  28. Kirschner J, Balslev H, Clemants SE, Ertter B, Alvarez MCFC, Hämet-Ahti L, Miyamoto F, Noltie HJ, Novara LJ, Novikov VS, Simonov SS, Snogerup S, Wilson KL (2002) Juncaceae 2: Juncus subg. Juncus, Species Plantarum: flora of the World Part 7. Australian Biological Resource Study, CanberraGoogle Scholar
  29. Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520CrossRefGoogle Scholar
  30. Linder HP (1998) Morphology and the evolution of wind pollination. In: Owens SJ, Rudall PJ (eds) Reproductive Biology in systematics, conservation and economic botany. Royal Botanic Garden, Kew, pp 123–135Google Scholar
  31. Lloyd DG (1984) Gender allocations in outcrossing cosexual plants. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, pp 277–300Google Scholar
  32. Mazer SJ (1989) Ecological, taxonomic, and life history correlates of seed mass among Indiana Dune angiosperms. Ecol Monogr 59:153–175CrossRefGoogle Scholar
  33. Michalski SG, Durka W (2007a) High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol 16:4715–4727CrossRefPubMedGoogle Scholar
  34. Michalski SG, Durka W (2007b) Synchronous pulsed flowering: analysis of the flowering phenology in Juncus (Juncaceae). Ann Bot 100:1271–1285CrossRefPubMedGoogle Scholar
  35. Michalski SG, Durka W (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytol 183:470–479CrossRefGoogle Scholar
  36. Mogensen HL (1975) Ovule abortion in Quercus (Fagaceae). Am J Bot 62:160–165CrossRefGoogle Scholar
  37. Moore HI, Burr S (1948) The control of rushes on newly reseeded land in Yorkshire. Grass Forage Sci 3:283–290CrossRefGoogle Scholar
  38. Niklas KJ (1985) The aerodynamics of wind pollination. Bot Rev 51:328–386CrossRefGoogle Scholar
  39. Pohl F (1929) Beziehungen zwischen Pollenbeschaffenheit, Bestäubungsart und Fruchtknotenbau. Beih Bot Central 46:247–285Google Scholar
  40. Pohl F (1937) Die Pollenerzeugung der Windblütler. Beih Bot Central 56:365–470Google Scholar
  41. Porcher E, Lande R (2005) Reproductive compensation in the evolution of plant mating systems. New Phytol 166:673–684CrossRefPubMedGoogle Scholar
  42. Prieto-Baena JC, Hidalgo PJ, Dominguez E, Galan C (2003) Pollen production in the Poaceae family. Grana 42:153–160CrossRefGoogle Scholar
  43. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber, PortlandGoogle Scholar
  44. Regal PJ (1982) Pollination by wind and animals: ecology of geographic patterns. Annu Rev Ecol Syst 13:497–524CrossRefGoogle Scholar
  45. Richards PW, Clapham AR (1941) Biological flora of the British Isles—Juncus L. J Ecol 29:362–368CrossRefGoogle Scholar
  46. Rodriguez AFM, Palacios IS, Molina RT (2007) Cyperaceae and Juncaceae pollination measured in the air at two sites in SW Spain. Aerobiologia 23:259–270CrossRefGoogle Scholar
  47. Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen–pistil interactions, or phylogeny? Ecol Monogr 70:617–643Google Scholar
  48. Salisbury EJ (1974) The reproduction of Juncus tenuis (Juncus macer) and its dispersal. Trans Bot Soc Edinburgh 42:187–190Google Scholar
  49. Scofield DG, Schultz ST (2006) Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc R Soc Lond B 273:275–282CrossRefGoogle Scholar
  50. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  51. Subba Reddi C, Reddi NS (1986) Pollen production in some anemophilous angiosperms. Grana 25:55–61CrossRefGoogle Scholar
  52. Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, CambridgeGoogle Scholar
  53. Tomlinson PB, Primack RB, Bunt JS (1979) Preliminary observations on floral biology in mangrove Rhizophoraceae. Biotropica 11:256–277CrossRefGoogle Scholar
  54. Welch D (1966) Juncus squarrosus L. J Ecol 54:535Google Scholar
  55. Westoby M, Leishman M, Lord J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc B 351:1309–1317CrossRefGoogle Scholar
  56. Whitehead DR (1969) Wind pollination in angiosperms: evolutionary and environmental considerations. Evolution 23:28–35CrossRefGoogle Scholar
  57. Whitehead DR (1983) Wind pollination: some ecological and evolutionary perspectives. In: Real L (ed) Pollination biology. Academic, Orlando, pp 97–108Google Scholar
  58. Wodehouse RP (1935) Pollen grains. McGraw Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental Research UFZ, Department of Community Ecology (BZF)HalleGermany

Personalised recommendations