Advertisement

Plant Systematics and Evolution

, Volume 286, Issue 1–2, pp 27–37 | Cite as

Placement of Kuhlmanniodendron Fiaschi & Groppo in Lindackerieae (Achariaceae, Malpighiales) confirmed by analyses of rbcL sequences, with notes on pollen morphology and wood anatomy

  • Milton Groppo
  • Pedro Fiaschi
  • Maria Luiza Faria Salatino
  • Gregório Cardoso Tápias Ceccantini
  • Francisco de Assis Ribeiro dos Santos
  • Christiano Franco Verola
  • Alexandre Antonelli
Original Article

Abstract

The phylogenetic placement of Kuhlmanniodendron Fiaschi & Groppo (Achariaceae) within Malpighiales was investigated with rbcL sequence data. This genus was recently created to accommodate Carpotroche apterocarpa Kuhlm., a poorly known species from the rainforests of Espírito Santo, Brazil. One rbcL sequence was obtained from Kuhlmanniodendron and analyzed with 73 additional sequences from Malpighiales, and 8 from two closer orders, Oxalidales and Celastrales, all of which were available at Genbank. Phylogenetic analyses were carried out with maximum parsimony and Bayesian inference; bootstrap analyses were used in maximum parsimony to evaluate branch support. The results confirmed the placement of Kuhlmanniodendron together with Camptostylus, Lindackeria, Xylotheca, and Caloncoba in a strongly supported clade (posterior probability = 0.99) that corresponds with the tribe Lindackerieae of Achariaceae (Malpighiales). Kuhlmanniodendron also does not appear to be closely related to Oncoba (Salicaceae), an African genus with similar floral and fruit morphology that has been traditionally placed among cyanogenic Flacourtiaceae (now Achariaceae). A picrosodic paper test was performed in herbarium dry leaves, and the presence of cyanogenic glycosides, a class of compounds usually found in Achariaceae, was detected. Pollen morphology and wood anatomy of Kuhlmanniodendron were also investigated, but both pollen (3-colporate and microreticulate) and wood, with solitary to multiple vessels, scalariform perforation plates and other features, do not seem to be useful to distinguish this genus from other members of the Achariaceae and are rather common among the eudicotyledons as a whole. However, perforated ray cells with scalariform plates, an uncommon wood character, present in Kuhlmanniodendron are similar to those found in Kiggelaria africana (Pangieae, Achariaceae), but the occurrence of such cells is not mapped among the angiosperms, and it is not clear how homoplastic this character could be.

Keywords

Achariaceae Cyanogenic glycosides Lindackerieae Kuhlmanniodendron Pollen rbcWood anatomy 

Notes

Acknowledgments

The authors thank Dr. Peter K. Endress and two anonymous reviewers for their critical reading of the manuscript and important suggestions to improve it. The first author would like to thank FAPESP (processes # 2000/07401-0 and 2006/03170-0) and USP-ProIP program for financial support and José Ricardo Barosella for his technical guidance with the tests to detect cyanogenic glycosides. P.F. is grateful to CNPq (GDE # 200682/2006-7) and the Integrative Life Sciences program from Virginia Commonwealth University (VCU) for financial support. F.A.R.S. thanks FAPESB and CNPq for financial support and a grant. Phylogenetic analyses were made possible by grants from Carl Tryggers Stiftelse and Helge Axson Johnsons Stiftelse to A.A.

References

  1. Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257:1491–1495CrossRefPubMedGoogle Scholar
  2. Alford MH (2005). Systematic studies in Flacourtiaceae. PhD Thesis, Cornell University, Ithaca, NY, 290 ppGoogle Scholar
  3. Angiosperm Phylogeny Group (AGP) III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121CrossRefGoogle Scholar
  4. Bernhard A, Endress PK (1999) Androecial development and systematics in Flacourtiaceae s.l. Plant Syst Evol 215:141–155CrossRefGoogle Scholar
  5. Chalk L, Chattaway MM (1933) Perforated ray cells. Proc R Soc Lond B 113(780):82–92CrossRefGoogle Scholar
  6. Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Systma KJ, Michael HJ, Kress WJ, Karol KG, Clark WD, Hedrén M, Gaut BS, Jansen RK, Kim KJ, Wimpee CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn GH Jr, Graham SW, Barrett SC, Dayanandan S, Albert VA (1993) Phylogenetic of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard 80:528–580CrossRefGoogle Scholar
  7. Chase MW, Zmartzy S, Lledo MD, Wurdack KJ, Swensen S, Fay MF (2002) When in doubt, put it in Flacourtiaceae: a molecular phylogenetic analysis based on plastid rbcL DNA sequences. Kew Bull 57:141–181CrossRefGoogle Scholar
  8. Committee IAWA (1989) List of microscopic features for hardwood identification. IAWA Bull 10:219–332Google Scholar
  9. Costa AF (1961) Farmacognosia, vol 2. Fundação Calouste Gulbenckian, LisboaGoogle Scholar
  10. Davis CC, Chase MW (2004) Elatinaceae are sister to Malpighiaceae; Peridiscaceae belong to Saxifragales. Am J Bot 91:262–273CrossRefGoogle Scholar
  11. Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ (2005) Explosive radiation of Malpighiales supports a Mid-Cretaceous origin of modern tropical rain forests. Am Nat 165:E36–E65CrossRefPubMedGoogle Scholar
  12. Doyle JA (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44:227–251CrossRefGoogle Scholar
  13. Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Adv Bot Res 44:1–61CrossRefGoogle Scholar
  14. Erdtman G (1952) Pollen morphology and plant taxonomy. Hafner, New YorkGoogle Scholar
  15. Erdtman G (1960) The acetolysis method. A revised description. Svensk Botanisk Tidskrft 39:561–564Google Scholar
  16. Fay MF, Swensen SM, Chase MW (1997) Taxonomic affinities of Medusagyne oppositifolia (Medusagynaceae). Kew Bull 52:111–120CrossRefGoogle Scholar
  17. Fay MF, Alverson W, de Bruijn AY, Swensen SM, Chase MW (1998) Plastid rbcL sequences indicate a close affinity between Diegodendron and Bixa. Taxon 47:43–50CrossRefGoogle Scholar
  18. Felsenstein L (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Fiaschi P, Groppo M (2008) Kuhlmanniodendron Fiashi & Groppo, a new eastern Brazilian genus of Achariaceae sensu lato segregated from Carpotroche Endl. (formerly included in Flacourtiaceae). Bot J Linn Soc 157:103–109CrossRefGoogle Scholar
  20. Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  21. Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155(3924):51CrossRefGoogle Scholar
  22. Gilg E (1925) Flacourtiaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, vol 21, 2nd ed. Wilhelm Engelmann, Leipzig, pp 377–457Google Scholar
  23. Groppo M, Pirani JR, Salatino MFL, Blanco SR, Kallunki JA (2008) Phylogeny of Rutaceae based on two noncoding regions from cpDNA. Am J Bot 95:985–1005CrossRefGoogle Scholar
  24. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  25. Hul S, Breteler FJ (1997) Réductions génériques dans les Oncobeae (Flacourtiaceae). Adansonia 19:253–262Google Scholar
  26. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York, p 532Google Scholar
  27. Kuhlmann M (1935) Novas especies botanicas da Hylea (Amazonia) e do Rio Doce (Espirito Santo). Arch Inst Biol Veg Rio de Janeiro 2:83–89Google Scholar
  28. Miller RB (1975) Systematic anatomy of the xylem and comments on the relationships of Flacourtiaceae. J Arnold Arbor 56:20–102Google Scholar
  29. Morellato LP, Haddad CFB (2000) The Brazilian Atlantic forest. Biotropica 32:786–792Google Scholar
  30. Morgan DR, Soltis DE (1993) Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data. Ann Missouri Bot Gard 80:631–660CrossRefGoogle Scholar
  31. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  32. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala UniversityGoogle Scholar
  33. Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Missouri Bot Gard 79:249–265CrossRefGoogle Scholar
  34. Pol D (2004) Empirical problems of the hierarchical likelihood ratio test for model selection. Syst Biol 53:949–962CrossRefPubMedGoogle Scholar
  35. Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808CrossRefPubMedGoogle Scholar
  36. Price RA, Palmer JD (1993) Phylogenetic relationships of the Geraniaceae and Geraniales from rbcL sequence comparisons. Ann Missouri Bot Gard 80:661–671CrossRefGoogle Scholar
  37. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spores terminology. Rev Paleobot Palynol 143:1–81CrossRefGoogle Scholar
  38. Rambaut A, Drummond AJ (2003) Tracer v1.3. http://evolve.zoo.ox.ac.uk/
  39. Savolainen V, Chase MW, Morton CM, Hoot SB, Soltis DE, Bayer C, Fay MF, de Brujin A, Sullivan S, Qiu Y-L (2000a) Phylogenetics of flowering plants based upon a combined analysis of plastid atpB and rbcL gene sequences. Syst Biol 49:306–362CrossRefPubMedGoogle Scholar
  40. Savolainen V, Fay MF, Albach DC, Backlund A, van der Bank M, Cameron KM, Johnson SA, Lledo MD, Pintaud JC, Powell M, Sheahan MC, Soltis DE, Soltis PS, Weston P, Whitten WM, Wurdack KJ, Chase MW (2000b) Phylogeny of the eudicots: a nearly complete familial analysis based on rbcL sequences. Kew Bull 55:257–309CrossRefGoogle Scholar
  41. Schwarzbach AE, Ricklefs RE (2000) Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Am J Bot 87:547–564CrossRefPubMedGoogle Scholar
  42. Setoguchi H, Kosuge K, Tobe H (1999) Molecular phylogeny of Rhizophoraceae based on rbcL gene sequences. J Plant Res 112:443–455CrossRefGoogle Scholar
  43. Simmons MP, Pickett KM, Miya M (2004) How meaningful are Bayesian posterior probabilities? Mol Biol Evol 21:188–199CrossRefPubMedGoogle Scholar
  44. Soltis DE, Soltis PS, Clegg MT, Durbin M (1990) RbcL sequence divergence and phylogenetic relationships in Saxifragaceae sensu lato. Proc Natl Acad Sci USA 87:4640–4644CrossRefPubMedGoogle Scholar
  45. Soltis DE, Soltis P, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from a combined data set of 18S rDNA, rbcL, and atpB sequences. Bot J Linn Soc 133:381–461Google Scholar
  46. Spencer KC, Seigler DS (1985) Cyanogenic glycosides and the systematics of the Flacourtiaceae. Biochem Syst Ecol 13:421–431CrossRefGoogle Scholar
  47. Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99:16138–16143CrossRefPubMedGoogle Scholar
  48. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  49. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 25:4876–4882CrossRefGoogle Scholar
  50. Tokuoka T, Tobe H (2006) Phylogenetic analyses of Malpighiales using plastid and nuclear DNA sequences, with particular reference to the embryology of Euphorbiaceae sens. str. J Plant Res 119:599–616CrossRefPubMedGoogle Scholar
  51. van Heel WA (1977) Flowers and fruits in Flacourtiaceae III. Some Oncobeae. Blumea 23:349–369Google Scholar
  52. Webber BL, Miller RE (2008) Gynocardin from Baileyoxylon lanceolatum and a revision of cyanogenic glycosides in Achariaceae. Biochem Syst Ecol 36:545–553CrossRefGoogle Scholar
  53. Wurdack KJ, Davis CC (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96:1551–1570CrossRefGoogle Scholar
  54. Wurdack KJ, Hoffmann P, Chase MW (2005) Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-trnF DNA sequences. Am J Bot 92:1397–1420CrossRefGoogle Scholar
  55. Zander RH (2004) Minimal values for reliability of bootstrap and jackknife proportions, decay index, and Bayesian posterior probability. Phyloinformatics 2:1–13Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Milton Groppo
    • 1
  • Pedro Fiaschi
    • 2
  • Maria Luiza Faria Salatino
    • 3
  • Gregório Cardoso Tápias Ceccantini
    • 3
  • Francisco de Assis Ribeiro dos Santos
    • 4
  • Christiano Franco Verola
    • 5
    • 7
  • Alexandre Antonelli
    • 6
    • 8
  1. 1.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  2. 2.Virginia Commonwealth UniversityRichmondUSA
  3. 3.Departamento de Botânica, Instituto de BiociênciasUniversidade de São PauloSão PauloBrazil
  4. 4.Departamento de Ciências BiológicasUniversidade Estadual de Feira de SantanaFeira de SantanaBrazil
  5. 5.Departamento de Botânica, Instituto de BiologiaUniversidade Estadual de Campinas Cidade UniversitáriaCampinasBrazil
  6. 6.Department of Plant and Environmental SciencesUniversity of GothenburgGothenburgSweden
  7. 7.Departamento de Botânica e EcologiaUniversidade Federal de Mato GrossoCuiabáBrazil
  8. 8.Institute of Systematic BotanyUniversity of ZurichZurichSwitzerland

Personalised recommendations