Plant Systematics and Evolution

, Volume 285, Issue 1–2, pp 83–101

Pollen evolution and its taxonomic significance in Cuscuta (dodders, Convolvulaceae)

Original Article

Abstract

The pollen morphology of 148 taxa (135 species and 13 varieties) of the parasitic plant genus Cuscuta (dodders, Convolvulaceae) was examined using scanning electron microscopy. Six quantitative characters were coded using the gap-weighting method and optimized onto a consensus tree constructed from three large-scale molecular phylogenies of the genus based on nuclear internal transcribed spacer (ITS) and plastid trn-LF sequences. The results indicate that 3-zonocolpate pollen is ancestral, while grains with more colpi (up to eight) have evolved only in two major lineages of Cuscuta (subg. Monogynella and clade O of subg. Grammica). Complex morphological intergradations occur between species when their tectum is described using the traditional qualitative types—imperforate, perforate, and microreticulate. This continuous variation is better expressed quantitatively as “percent perforation,” namely the proportion of perforated area (puncta or lumina) from the total tectum surface. Tectum imperforatum is likely the ancestral condition, while pollen grains with increasingly larger perforation areas have evolved multiple times. The reticulated tectum, unknown in other Convolvulaceae, has evolved in Cuscuta only in two lineages (subg. Monogynella, and clade O of subg. Grammica). Overall, the morphology of pollen supports Cuscuta as a sister to either the “bifid-style” Convolvulaceae clade (Dicranostyloideae) or to one of the members of this clade. Pollen characters alone are insufficient to reconstruct phylogenetic relationships; however, palynological information is useful for the species-level taxonomy of Cuscuta.

Keywords

Convolvulaceae Cuscuta Dodders Evolution Phylogeny Pollen morphology Scanning electron microscopy Taxonomy 

Supplementary material

606_2009_259_MOESM1_ESM.jpg (3.9 mb)
Online resource 1: Pollen size optimized onto a summary consensus tree resulted from three molecular phylogenies of Cuscuta based on nuclear ITS and plastid trnL-F sequences (García and Martin 2007; Stefanović et al. 2007; Stefanović and Costea, personal communication). Pollen size is polymorphic but the species of subg. Monogynella have the largest pollen grains

References

  1. Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Intl 11:36–42Google Scholar
  2. Austin DF (1973a) The American Erycibeae (Convolvulaceae). Maripa, Dicranostyles and Lysiostyles. I. Systematics. Ann Missouri Bot Gard 60:306–412CrossRefGoogle Scholar
  3. Austin DF (1973b) The American Erycibeae (Convolvulaceae). Maripa, Dicranostyles and Lysiostyles. II. Palynology. Pollen Spores 15:203–226Google Scholar
  4. Austin DF (1998) Parallel and convergent evolution in the Convolvulaceae. In: Mathews P, Sivadasan M (eds) Biodiversity and taxonomy of tropical flowering plants. Mentor Books, Calicut, pp 201–234Google Scholar
  5. Blackmore S, Crane PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In: Owens SJ, Rudall PJ (eds) Reproductive biology. Royal Botanic Garden, Kew, pp 159–182Google Scholar
  6. Borsch T, Barthlott W (1998) Structure and evolution of metareticulate pollen. Grana 37:68–78CrossRefGoogle Scholar
  7. Costea M (2007-onwards) Digital atlas of Cuscuta (Convolvulaceae). Wilfrid Laurier University Herbarium, Ontario, Canada. https://www.wlu.ca/page.php?grp_id=2147&p=8968 (accessed 2 June 2009)
  8. Costea M, Stefanović S (2009a) Cuscuta jepsonii (Convolvulaceae), an invasive weed or an extinct endemic? Am J Bot 96:1744–1750CrossRefGoogle Scholar
  9. Costea M, Stefanović S (2009b) Molecular phylogeny of Cuscuta californica complex (Convolvulaceae) and a new species from New Mexico and Trans-Pecos. Syst Bot 34:570–579CrossRefGoogle Scholar
  10. Costea M, Tardif FJ (2006) Biology of Canadian weeds. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can J Plant Sci 86:293–316Google Scholar
  11. Costea M, Nesom GL, Stefanović S (2006a) Taxonomy of Cuscuta gronovii and Cuscuta umbrosa (Convolvulaceae). Sida 22:197–207Google Scholar
  12. Costea M, Nesom GL, Stefanović S (2006b) Taxonomy of the Cuscuta pentagona complex (Convolvulaceae) in North America. Sida 22:151–175Google Scholar
  13. Costea M, Nesom GL, Stefanović S (2006c) Taxonomy of the Cuscuta indecora (Convolvulaceae) complex in North America. Sida 22:209–225Google Scholar
  14. Costea M, Nesom GL, Stefanović S (2006d) Taxonomy of the Cuscuta salina-californica complex (Convolvulaceae). Sida 22:176–195Google Scholar
  15. Costea M, Aiston F, Stefanvović S (2008a) Species delimitation, phylogenetic relationships, and two new species in the Cuscuta gracillima complex (Convolvulaceae). Botany 86:670–681CrossRefGoogle Scholar
  16. Costea M, García-Ruiz I, Welsh M (2008b) A new species of Cuscuta (Convolvulaceae) from Michoacan Mexico. Brittonia 3:235–239Google Scholar
  17. Cox PA (1988) Hydrophilous pollination. Annu Rev Ecol Syst 19:261–279CrossRefGoogle Scholar
  18. Dajoz I, Till-Bottraud I, Gouyon PH (1991) Evolution of pollen morphology. Science 253:66–68CrossRefPubMedGoogle Scholar
  19. Das S, Banerji ML (1966) Pollen morphology of a new species of Cuscuta. Curr Sci (India) 35:105–106Google Scholar
  20. Dawson JH, Musselman LJ, Wolswinkel P, Dorr I (1994) Biology and control of Cuscuta. Rev Weed Sci 6:265–317Google Scholar
  21. Doyle JA (2005) Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44:227–251CrossRefGoogle Scholar
  22. Doyle JA (2008) Evolutionary significance of granular exine structure in the light of phylogenetic analyses. Rev Palaeobot Palynol. doi:10.1016/j.revpalbo.2008.08.001
  23. Engelmann G (1859) Systematic arrangement of the species of the genus Cuscuta with critical remarks on old species and descriptions of new ones. Trans Acad Sci St Louis 1:453–523Google Scholar
  24. Erdtman G (1966) Sporoderm morphology and morphogenesis. A collocation of data and suppositions. Grana Palynol 6:317–323CrossRefGoogle Scholar
  25. Ferguson FLS, Skvarla JJ (1982) Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Bot J Linn Soc 84:183–193CrossRefGoogle Scholar
  26. Ferguson K, Verdcourt B, Poole MM (1977) Pollen morphology in the genera Merremia and Operculina (Convolvulaceae) and its taxonomic significance. Kew Bull 31:763–773CrossRefGoogle Scholar
  27. Fogelberg SO (1938) The cytology of Cuscuta. Bull Torrey Bot Club 65:631–645CrossRefGoogle Scholar
  28. García MA, Castroviejo S (2003) Estudios citotaxonómicos en las especies ibéricas del género Cuscuta (Convolvulaceae). Anales Jard Bot Madrid 60:33–44Google Scholar
  29. García MA, Martin MP (2007) Phylogeny of Cuscuta subgenus Cuscuta (Convolvulaceae) based on nrDNA ITS and chloroplast trnL intron sequences. Sys Bot 32:899–916Google Scholar
  30. García-Cruz J, Sosa V (2006) Coding quantitative character data for phylogenetic analysis: a comparison of five methods. Sys Bot 31:302–309CrossRefGoogle Scholar
  31. Gibbs PE, Ferguson IK (1987) Correlations between pollen exine sculpturing and angiosperm self-incompatibility systems—a reply. Plant Syst Evol 157:143–159CrossRefGoogle Scholar
  32. Hallier H (1893) Versuch einer natuerlichen Gliederung der Convolvulaceen auf morphologischer und anatomischer Grundlage. Bot Jahrb Syst Pflanzengesch Pflanzengeogr 16:453–591Google Scholar
  33. Harley MM, Ferguson IK (1990) The role of the SEM in pollen morphology and plant systematics. In: Claugher D (ed) Scanning electron microscopy in taxonomy and functional morphology. Oxford University Press, Oxford, pp 45–68Google Scholar
  34. Hesse M (2000) Pollen wall stratification and pollination. Plant Syst Evol 222:1–17CrossRefGoogle Scholar
  35. Hsiao LC, Kuoh CS (1995) Pollen morphology of the Ipomea (Convolvulaceae) in Taiwan. Taiwania 40:229–316Google Scholar
  36. Jain RK, Nanda S (1966) Pollen morphology of some recent plants of Pilani, Rajasthan. Palynol Bull Lucknow, II and III:56–69Google Scholar
  37. Kaul MLH, Bhan AK (1977) Cytogenetics of polyploids VI. Cytology of tetraploid and hexaploid Cuscuta reflexa Roxb. Cytologia 42:125–136Google Scholar
  38. Leite K, Simao-Bianchini R, Santos F (2005) Morphology pollen of species genus Merremia Dennst. (Convolvulaceae) occurring in Bahia State, Brazil. Acta Bot Bras 19:313–321CrossRefGoogle Scholar
  39. Lewis WH (1971) Pollen differences between Stylisma and Bonamia. Brittonia 23:331–334CrossRefGoogle Scholar
  40. Lewis WH, Oliver RL (1965) Realignment of Calystegia and Convolvulus (Convolvulaceae) in Taiwan. Ann Missouri Bot Gard 52:217–222CrossRefGoogle Scholar
  41. Liao GI, Chen MY, Huoh CS (2005) Pollen morphology of Cuscuta (Convolvulaceae) in Taiwan. Bot Bull Acad Sin 46:75–81Google Scholar
  42. Lienau K, Straka H, Friedrich B (1986) Palynologia Madagassica et Mascarenica. Fam. 167–181. Akademie der Wissenschaften und der Literatur, Mainz and Franz Steiner Verlag, WiesbadenGoogle Scholar
  43. Lisci M, Tanda C, Pacini E (1994) Pollination ecophysiology of Mercurialis annua L. (Euphorbiaceae), an anemophilous species flowering all year round. Ann Bot 74:125–135CrossRefGoogle Scholar
  44. Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, SunderlandGoogle Scholar
  45. Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33:83–103CrossRefGoogle Scholar
  46. Manitz H (1970) Beiträge zur Pollenmorphologie und Systematik der Convolvulaceen-Gattungen Maripa und Mouroucoa. Feddes Repert 82:167–181CrossRefGoogle Scholar
  47. Martin HA (2001) The family Convolvulaceae in the tertiary of Australia: evidence from pollen. Aust J Bot 49:221–234CrossRefGoogle Scholar
  48. McNeal JR, Arumugunathan K, Kuehl JV, Boore JL, dePamphilis CW (2007) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55. doi:10.1186/1741-7007-5-55 CrossRefPubMedGoogle Scholar
  49. Menemen Y, Jury SL (2002) Pollen studies on some species of the genus Convolvulus L. (Convolvulaceae) from Morocco. Turk J Bot 26:141–148Google Scholar
  50. Mignot A, Hoss C, Dajoz I, Leuret C, Henry JP, Druillaux JM, Heberle-Bors E, Till-Bottraud I (1994) Pollen aperture polymorphism in the angiosperms; importance, possible causes and consequences. Acta Bot Gallica 141:109–122Google Scholar
  51. Muller J (1970) Palynological evidence on early differentiation of angiosperms. Biol Rev 54:417–450CrossRefGoogle Scholar
  52. Parker C, Riches C (1993) Parasitic weeds of the world: biology and control. CABA, WallingfordGoogle Scholar
  53. Pazy B, Plitmann U (1995) Chromosome divergence in the genus Cuscuta and its systematic implications. Caryologia 48:173–180Google Scholar
  54. Pichon M (1947) Le genre Humbertia. Notulae Systematicae 13:13–25Google Scholar
  55. Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Paleobot Palyno 143:1–81CrossRefGoogle Scholar
  56. Rao AN, Lee YK (1970) Studies on Singapore pollen. Pac Sci 24:255–268Google Scholar
  57. Ressayre A, Godelle B, Raquin C, Gouyon PH (2002) Aperture pattern ontogeny in angiosperms. J Exp Zoo 294:122–135CrossRefGoogle Scholar
  58. Ressayre A, Dreyer L, Triki-Teurtroy S, Forchioni A, Nadot S (2005) Post-meiotic cytokinesis and pollen aperture pattern ontogeny: comparison of development in four species differing in aperture pattern. Am J Bot 92:576–583CrossRefGoogle Scholar
  59. Robertson KR (1971) The genus Jacquemontia (Convolvulaceae) in North and Central America and the West Indies. Ph.D. dissertation. Washington UniversityGoogle Scholar
  60. Robertson KR (1982) Odonellia, a new genus of Convolvulaceae from tropical America. Brittonia 34:417–423CrossRefGoogle Scholar
  61. Schols P, Dessein S, D’hondt C, Huysmans S, Smets E (2002) CARNOY: a new digital measurement tool for palynology. Grana 41:124–126CrossRefGoogle Scholar
  62. Schols P, D’hondt C, Geuten K, Merckx V, Jamssens S, Smets E (2004) MorphoCode: coding quantitative data for phlyogenetic analysis. PhyloInformatics 4:1–4Google Scholar
  63. Sengupta S (1972) On the pollen morphology of Convolvulaceae with special reference to its taxonomy. Rev Palaeobot Palyno 13:157–212CrossRefGoogle Scholar
  64. Staples GW, Carine M, Austin DF (2009) Convolvulaceae pollen atlas. University of Arizona Herbarium. http://ag.arizona.edu/herbarium/assoc/projects/convolv/Convolvulaceae_Pollen_Atlas.htm (accessed 5 April 2009)
  65. Stefanović S, Olmstead RG (2004) Testing the phylogenetic position of a parasitic plant (Cuscuta, Convolvulaceae, Asteridae): Bayesian inference and the parametric bootstrap on data drawn from three genomes. Syst Biol 53:384–399CrossRefPubMedGoogle Scholar
  66. Stefanović S, Krueger L, Olmstead RG (2002) Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. Am J Bot 89:1510–1522CrossRefGoogle Scholar
  67. Stefanović S, Austin D, Olmstead RG (2003) Classification of the Convolvulaceae: a phylogenetic approach. Syst Bot 28:791–806Google Scholar
  68. Stefanović S, Kuzmina M, Costea M (2007) Delimitation of major lineages within Cuscuta subgenus Grammica (Convolvulaceae) using plastid and nuclear DNA sequences. Am J Bot 94:568–589CrossRefGoogle Scholar
  69. Stuessy TF (2008) Plant taxonomy: the systematic evaluation of comparative data, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  70. Swiderski DL, Zelditch ML, Fink WL (1998) Why morphometrics is not special: coding quantitative data for phylogenetic analysis. Syst Biol 47:508–519PubMedGoogle Scholar
  71. Tanaka N, Uehara K, Murata J (2004) Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J Plant Res 117:265–276CrossRefPubMedGoogle Scholar
  72. Tellería MC, Daners G (2003) Pollen types in southern New World Convolvulaceae and their taxonomic significance. Plant Syst Evol 243:99–118CrossRefGoogle Scholar
  73. Thiele K (1993) The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9:275–304CrossRefGoogle Scholar
  74. Till-Bottraud I, De Paepe R, Mignot A, Dajoz I (1995) Pollen heteromorphism in Nicotiana tabacum (Solanaceae). Am J Bot 82:1040–1048CrossRefGoogle Scholar
  75. Till-Bottraud I, Vincent M, Dajoz I, Mignot A (1999) Pollen aperture heteromorphism: variation in pollen type proportions along altitudinal transects in Viola calcarata (Violaceae). Comptes Rendus de L Académie des Sciences Serie 3. Sciences de la Vie 322:579–589PubMedGoogle Scholar
  76. Van Campo M (1976) Patterns of pollen morphological variation within taxa. In: Ferguson IK, Muller J (eds) The evolutionary significance of the exine. Academic, London, pp 125–135Google Scholar
  77. Vezey EL, Skvarla JJ, Vanderpool SS (1991) Characterizing pollen sculpture of three closely related Capparaceae species using quantitative image analysis of scanning electron micrographs. In: Blackmore S, Barnes SH (eds) Pollen and spores—patterns of diversification. Clarendon, Oxford, pp 291–300Google Scholar
  78. Vezey EL, Shah VP, Skvarla JJ (1992) A numerical approach to pollen sculpture terminology. Plant Syst Evol 181:245–254CrossRefGoogle Scholar
  79. Vishnu-Mittre (1964) Contemporary thought in palynology. Phytomorph 14:135–147Google Scholar
  80. Wiens JJ (2001) Character analysis in morphological phylogenetics: problems and solutions. Syst Biol 50:689–699CrossRefPubMedGoogle Scholar
  81. Wodehouse RP (1936) Evolution of pollen grains. Bot Rev 2:67–84CrossRefGoogle Scholar
  82. Yuncker TG (1932) The genus Cuscuta. Mem Torrey Bot Club 18:113–331Google Scholar
  83. Zavada MS (1984) The relation between pollen exine sculpturing and self-incompatibility mechanisms. Plant Syst Evol 147:63–78CrossRefGoogle Scholar
  84. Zavada MS (1990) Correlations between pollen exine sculpturing and angiosperm self-incompatibility systems—a rebuttal. Taxon 39:442–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of BiologyWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of BiologyUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations