Molecular phylogeny of miR390-guided trans-acting siRNA genes (TAS3) in the grass family

  • Dan Shen
  • Sheng Wang
  • Huan Chen
  • Qian-Hao Zhu
  • Chris Helliwell
  • Longjiang Fan
Original Article

Abstract

Trans-acting siRNAs (tasiRNAs) are a plant-specific class of 21-nt endogenous siRNAs that function as miRNA-like posttranscriptional negative regulators. Several tasiRNA loci (known as TAS genes) have been characterized to date in rice and Arabidopsis. The TAS3 family is distinguished from other TAS loci by the dual miR390 complementary sites flanking the tasiRNA region and its dependence on ARGONAUTE7. In this study, 55 putative TAS3 genes were identified by database mining and PCR amplification from the grass family. Phylogenetic analysis indicated that several genome/gene duplication events have been involved in the expansion of TAS3 genes while some TAS3 genes might have been lost during evolution of the grass family. The role of miR390 target genes in the origin of TAS3 genes are discussed.

Keywords

Trans-acting siRNA (tasiRNA) TAS3 Poaceae Evolution miR390 

Supplementary material

606_2009_221_MOESM1_ESM.doc (626 kb)
Supplementary material 1 (DOC 625 kb)

References

  1. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genet 36:1282–1290CrossRefPubMedGoogle Scholar
  2. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221CrossRefPubMedGoogle Scholar
  3. Axtell MJ, Jan C, Rajagopalan R, Bartel DP (2006) A two-hit trigger for siRNA biogenesis in plants. Cell 127:565–577CrossRefPubMedGoogle Scholar
  4. Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769CrossRefPubMedGoogle Scholar
  5. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763CrossRefPubMedGoogle Scholar
  6. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS ONE 2:e219CrossRefPubMedGoogle Scholar
  7. Gaut BS, Doebley JF (1997) DNA sequence evidence for the segmental allotetraploid origin of maize. Proc Natl Acad Sci USA 94:6809–6814CrossRefPubMedGoogle Scholar
  8. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296:92–100CrossRefPubMedGoogle Scholar
  9. Guo X, Gui Y, Wang Y, Zhu Q-H, Helliwell C, Fan L (2008) Selection and mutation on microRNA target sequences during rice evolution. BMC Genomics 9:454CrossRefPubMedGoogle Scholar
  10. Guyot R, Keller B (2004) Ancestral genome duplication in rice. Genome 47:610–614CrossRefPubMedGoogle Scholar
  11. Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD, Carrington JC (2007) Genome-wide analysis of the RNA-dependent RNA polymerase6/DICER-like4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942CrossRefPubMedGoogle Scholar
  12. Hunter C, Willmann M, Wu G, Yoshikawa M, de la Luz Gutiérrez-Nava M, Poethig S (2006) Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis. Development 133:2973–2981CrossRefPubMedGoogle Scholar
  13. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799CrossRefPubMedGoogle Scholar
  14. Kasschau KD, Fahlgren N, Chapman E, Sullivan C, Cumbie J, Givan S, Carrington J (2007) Genome-wide profiling and analysis of Arabidopsis siRNAs. PLoS Biol 5:e57CrossRefPubMedGoogle Scholar
  15. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucl Acids Res 33:511–518CrossRefPubMedGoogle Scholar
  16. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinf 5:150–163CrossRefGoogle Scholar
  17. Liu B, Chen Z, Song X, Liu C, Cui X, Zhao X, Fang J, Xu W, Zhang H, Wang X et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718CrossRefPubMedGoogle Scholar
  18. Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141CrossRefPubMedGoogle Scholar
  19. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908CrossRefPubMedGoogle Scholar
  20. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Jane Grimwood, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556CrossRefPubMedGoogle Scholar
  21. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379CrossRefPubMedGoogle Scholar
  22. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425CrossRefPubMedGoogle Scholar
  23. Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411CrossRefPubMedGoogle Scholar
  24. Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC, Arazi T (2006) Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J 48:511–521CrossRefPubMedGoogle Scholar
  25. Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Molecular Cell 16:69–79CrossRefPubMedGoogle Scholar
  26. Wang X, Shi X, Hao B, Ge S, Luo J (2005) Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 165:937–946CrossRefPubMedGoogle Scholar
  27. Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708CrossRefPubMedGoogle Scholar
  28. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175CrossRefPubMedGoogle Scholar
  29. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38CrossRefPubMedGoogle Scholar
  30. Zhang Y, Xu G, Guo X, Fan L (2005) Two ancient rounds of polyploidy in rice genome. J Zhejiang Univ Science B 6:87–90CrossRefGoogle Scholar
  31. Zhu Q-H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dan Shen
    • 1
  • Sheng Wang
    • 1
    • 2
  • Huan Chen
    • 1
  • Qian-Hao Zhu
    • 3
  • Chris Helliwell
    • 3
  • Longjiang Fan
    • 1
  1. 1.Institute of Crop Science and Institute of BioinformaticsZhejiang UniversityHangzhouChina
  2. 2.Hangzhou Dianzi University, XiashaHangzhouChina
  3. 3.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations