Plant Systematics and Evolution

, Volume 283, Issue 1–2, pp 33–56 | Cite as

Contribution to ITS phylogeny of the Brassicaceae, with special reference to some Asian taxa

  • Dmitry A. German
  • Nikolai Friesen
  • Barbara Neuffer
  • Ihsan A. Al-Shehbaz
  • Herbert Hurka
Original Article


Sequence data from the nuclear ribosomal internal transcribed spacer (ITS) region for 189 accessions representing 184 species in 121 genera of Brassicaceae were used to determine monophyly of tribes and genera, tribal boundaries, and component genera. Parsimony analysis and Bayesian inference suggest that the tribes Camelineae and Arabideae are polyphyletic and should be subdivided into smaller tribes. The study also supports the recent recognition of the new tribes Aphragmeae, Biscutelleae, Buniadeae, Calepineae, Conringieae, Dontostemoneae, Erysimeae, Malcolmieae, Megacarpaeeae, and Turritideae. The data argue for the placement of Borodinia in the tribe Boechereae, Litwinowia and Pseudoclausia in the Chorisporeae, Atelanthera and Streptoloma in the Euclidieae, and Megacarpaea and Pugionium in the Megacarpaeeae, and exclusion of Asperuginoides, Didymophysa, and Ptilotrichum from the Alysseae, Macropodium, Pseudoturritis, and Stevenia from the Arabideae, and Crucihimalaya, Irenepharsus, Pachycladon, and Turritis from the Camelineae. Finally, the findings support the expansion of Stevenia to include both Berteroella and Ptilotrichum, Sterigmostemum to include Oreoloma and one species of Anchonium, Crucihimalaya to include Transberingia and several species of Arabis, and Parrya to include Pseudoclausia. The data also suggest that Calymmatium and Olimarabidopsis may be congeneric.


Brassicaceae ITS phylogeny Tribal limits Asia 

Supplementary material

606_2009_213_MOESM1_ESM.pdf (74 kb)
Supplementary material (PDF 73 kb)
606_2009_213_MOESM2_ESM.txt (105 kb)
Supplementary material (TXT 104 kb)


  1. Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contrib Gray Herb 204:3–148Google Scholar
  2. Al-Shehbaz IA (2000) What is Nasturtium tibeticum (Brassicaceae)? Novon 10:334–336CrossRefGoogle Scholar
  3. Al-Shehbaz IA (2002) New species of Alyssum, Aphragmus, Arabis, and Sinosophiopsis (Brassicaceae) from China and India. Novon 12:309–313CrossRefGoogle Scholar
  4. Al-Shehbaz IA (2003) Transfer of most North American species of Arabis to Boechera (Brassicaceae). Novon 13:381–391CrossRefGoogle Scholar
  5. Al-Shehbaz IA (2005) Nomenclatural notes on Eurasian Arabis (Brassicaceae). Novon 15:519–524Google Scholar
  6. Al-Shehbaz IA, Appel O (2002) A synopsis of the Central Asian Rhammatophyllum (Brassicaceae). Novon 12:1–4CrossRefGoogle Scholar
  7. Al-Shehbaz IA, Warwick SI (2005) A synopsis Eutrema (Brassicaceae). Harvard Pap Bot 10:129–135CrossRefGoogle Scholar
  8. Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 12:429–433CrossRefGoogle Scholar
  9. Al-Shehbaz IA, O’Kane SL Jr, Price RA (1999) Generic placement of species excluded from Arabidopsis (Brassicaceae). Novon 9:296–307CrossRefGoogle Scholar
  10. Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259:89–120CrossRefGoogle Scholar
  11. Appel O, Al-Shehbaz IA (2003) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants 5, 75–174. Springer, BerlinGoogle Scholar
  12. Avetisyan VE (1990) A review of the system of Brassicaceae of flora of Caucasus. Bot J (Moscow & Leningrad) 75:1029–1032Google Scholar
  13. Bailey CD, Doyle JJ (1999) Potential phylogenetic utility of the low-copy nuclear gene pistillata in dicotyledonous plants: comparison to nrDNA ITS and trnL intron in Sphaerocardamum and other Brassicaceae. Molec Phylogenet Evol 13:20–30PubMedCrossRefGoogle Scholar
  14. Bailey CD, Price RA, Doyle JJ (2002) Systematics of the Halimolobine Brassicaceae: evidence from three loci and morphology. Syst Bot 27:318–332Google Scholar
  15. Bailey CD, Koch MA, Mayer M, Mummenhoff K, O’Kane SL Jr, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Towards a global phylogeny of the Brassicaceae. Molec Biol Evol 23:2142–2160PubMedCrossRefGoogle Scholar
  16. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Amer J Bot 93:607–619CrossRefGoogle Scholar
  17. Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Amer J Bot 95:1307–1327CrossRefGoogle Scholar
  18. Bentham G, Hooker JD (1862) Genera plantarum 1. Ranunculaceas-Cornaceas, LondonGoogle Scholar
  19. Berkutenko AN (2003) On the genus Borodinia (Cruciferae). Bot J (Moscow & St Petersburg) 88(11):129–133Google Scholar
  20. Berkutenko AN (2005) New combination in the genus Arabis L. (Cruciferae), or once more on the genus Borodinia N. Busch. Novosti Sist Vyssh Rast 37:91–94Google Scholar
  21. Boczantzeva VV (1976) New genus Asterotricha (Cruciferae) from Kazakhstan. Bot J (Moscow & Leningrad) 61:930–931Google Scholar
  22. Boczantzeva VV (1977) Chromosome numbers of two species from the family Cruciferae. Bot J (Moscow & Leningrad) 62:1504–1505Google Scholar
  23. Botschantzev VP (1972) On Parrya R.Br., Neuroloma Andrz. and some other genera (Cruciferae). Bot J (Moscow & Leningrad) 57:664–673Google Scholar
  24. Botschantzev VP (1980) Two new genera of the family Cruciferae. Bot J (Moscow & Leningrad) 65:425–427Google Scholar
  25. Busch NA (1926) Cruciferae. Flora Siberiae & Extremi Orientalis 4:393–490 LeningradGoogle Scholar
  26. Busch NA (1939) Cruciferae. In: Komarov VL, Busch NA (eds) Flora URSS 8. Academy of Sciences Press, Moscow, pp 14–606Google Scholar
  27. Clauss MJ, Koch MA (2006) Arabidopsis and its poorly known relatives. Trends Pl Sci 11:449–459CrossRefGoogle Scholar
  28. Crespo MB, Lledo MD, Fay MF, Chase MW (2000) Subtribe Vellinae (Brassiceae, Brassicaceae): a combined analysis of ITS nrDNA sequences and morphological data. Ann Bot 86:53–62CrossRefGoogle Scholar
  29. de Candolle AP (1821) Regni Vegetabilis Systema Natruralle, sive ordines, genera & species plantarum secundum methodi natrualis normas digestarum & descriptarum 2, Treuttel and Würtz, Paris, pp 1–745Google Scholar
  30. Dorofeyev VI (2004) System of family Cruciferae B. Juss. (Brassicaceae Burnett). Turczaninowia 7(3):43–52Google Scholar
  31. Dudley TR, Cullen J (1965) Studies in the Old World Alysseae. Feddes Repert 71:218–228CrossRefGoogle Scholar
  32. Dvořák F (1968) Study of the characters of the genus Parrya R.Br. Přirod Fak Univ Purk Brno 497:343–359Google Scholar
  33. Dvořák F (1972) Study of the evolutional relationship of the tribe Hesperideae. Folia Fac Sci Nat Univ Purkynianae Brun Biol 13(4):1–82Google Scholar
  34. Francisco-Ortega J, Fuertes-Aguilar J, Gómez-Campo C, Santos-Guerra A, Jansen RK (1999) Internal transcribed spacer sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two Old World disjunctions. Molec Phylogenet Evol 11:361–380PubMedCrossRefGoogle Scholar
  35. Francisco-Ortega J, Fuertes-Aguilar J, Kim SC, Santos-Guerra A, Crawford DJ, Jansen RK (2002) Phylogeny of the Macaronesian endemic Crambe section Dendrocrambe (Brassicaceae) based on internal transcribed spacer sequences of nuclear ribosomal DNA. Amer J Bot 89:1984–1990CrossRefGoogle Scholar
  36. Franzke A, Pollmann K, Bleeker W, Kohrt R, Hurka H (1998) Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and non-coding chloroplast DNA. Folia Geobot 33:225–240Google Scholar
  37. Franzke A, Hurka H, Janssen D, Neuffer B, Friesen N, Markov M, Mummenhoff K (2004) Molecular signals for Late Tertiary/Early Quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Molec Ecol 13:2789–2795CrossRefGoogle Scholar
  38. Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis’s family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58(2):425–437Google Scholar
  39. German DA (2004) The type specimen of Draba macrophylla Turcz. and the correct name of the single species of the genus Borodinia N. Busch (Cruciferae). In: Kamelin RV (ed) Problems of botany of South Siberia and Mongolia. AzBuka Press, Barnaul, pp 25–27Google Scholar
  40. German DA (2005) Contribution to the taxonomy of Arabidopsis s.l. The status of Transberingia and two new combinations in Crucihimalaya (Cruciferae). Turczaninowia 8(4):5–15Google Scholar
  41. German DA (2009) A check-list and the system of the Cruciferae of Altai. Komarovia 6(2):83–92Google Scholar
  42. German DA, Al-Shehbaz IA (2008a) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae and Erysimeae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 13:165–170CrossRefGoogle Scholar
  43. German DA, Al-Shehbaz IA (2008b) Dendroarabis, a new Asian genus of Brassicaceae. Harvard Pap Bot 13:289–291CrossRefGoogle Scholar
  44. German DA, Ebel AL (2005) Generic placement of Arabidopsis rupicola (Cruciferae). Turczaninowia 8(3):5–12Google Scholar
  45. Grubov VI (1982) Key to the vascular plants of Mongolia (with an atlas). Nauka Press, Leningrad, p 442Google Scholar
  46. Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Amer J Bot 89:1826–1842CrossRefGoogle Scholar
  47. Hall JC, Iltis HH, Sytsma KJ (2004) Molecular phylogenetics of core Brassicales, placement of orphant genera Emblingia, Forchhammeria, Tirania, and character evolution. Syst Bot 29:654–669CrossRefGoogle Scholar
  48. Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335Google Scholar
  49. Hedge IC (1976) A systematic and geographical survey of the Old World Cruciferae. In: Vaughan JG, MacLeod AJ, Jones BMG (eds) The biology and chemistry of the Cruciferae. Academic Press, London, pp 1–45Google Scholar
  50. Heenan PB, Mitchell AD, Koch M (2002) Molecular systematics of the New Zealand Pachycladon (Brassicaceae) complex: generic circumscription and relationships to Arabidopsis sens. lat. and Arabis sens. lat. N Z J Bot 40:543–562Google Scholar
  51. Hurka H, Paetsch M, Bleeker W, Neuffer B (2005) Evolution within the Brassicaceae. Nova Acta Leopoldina 92:113–127Google Scholar
  52. Jafri SMH (1973) Brassicaceae. In: Nasir E, Ali SI (eds) Flora of West Pakistan 55. Ferozsons, Karachi, pp 1–308Google Scholar
  53. Janchen E (1942) Das System der Cruciferen. Österr Bot Ztg 91:1–28CrossRefGoogle Scholar
  54. Johnston JS, Pepper AE, Hall AE, Chen ZJ, Hodnett G, Drabek J, Lopez R, Price HJ (2005) Evolution of genome size in Brassicaceae. Ann Bot 95:229–235PubMedCrossRefGoogle Scholar
  55. Kamelin RV (2002) The Cruciferae (brief survey of the system). Barnaul, 51 pGoogle Scholar
  56. Kamelin RV, German DA (2001) New species of the genus Sterigmostemum Bieb. (Cruciferae) from East Kazakhstan. Turczaninowia 4(3):5–9Google Scholar
  57. Khosravi AR, Mohsenzadeh S, Mummenhoff K (2009) Phylogenetic relationships of Old World Brassicaceae from Iran based on nuclear ribosomal DNA sequences. Biochem Syst Ecol 37:106–115CrossRefGoogle Scholar
  58. Kiefer C, Dobes C, Koch MA (2009) Boechera or not? Phylogeny and phylogeography of eastern North American Boechera species (Brassicaceae). Taxon (in press)Google Scholar
  59. Koch M (2003) Molecular phylogenetics, evolution and population biology in Brassicaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution 1: phanerograms. Science Publishers Inc., Enfield, pp 1–35Google Scholar
  60. Koch M, Al-Shehbaz IA (2002) Molecular data indicate complex intra- and intercontinental differentiation of American Draba (Brassicaceae). Ann Missouri Bot Gard 89:88–109CrossRefGoogle Scholar
  61. Koch MA, Al-Shehbaz IA (2009) Molecular systematics and evolution of “wild” crucifers (Brassicaceae or Cruciferae). In: Gupta SK (ed) Biology and breeding of crucifers. Taylor and Francis Group, Boca Raton, pp 1–19Google Scholar
  62. Koch M, Mummenhoff K (2001) Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence data. Pl Syst Evol 227:209–225CrossRefGoogle Scholar
  63. Koch M, Bishop J, Mitchell-Olds T (1999) Molecular systematics and evolution of Arabidopsis and Arabis. Pl Biol 1:529–537CrossRefGoogle Scholar
  64. Koch M, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Molec Biol Evol 17:1483–1498PubMedGoogle Scholar
  65. Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Amer J Bot 88:534–544CrossRefGoogle Scholar
  66. Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Missouri Bot Gard 90:151–171CrossRefGoogle Scholar
  67. Koch M, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak M (2007) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Molec Biol Evol 24:63–73PubMedCrossRefGoogle Scholar
  68. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  69. Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949CrossRefGoogle Scholar
  70. Kuan KC (1987) Lepidieae DC. In: Cheo TY (ed) Flora Reipublicae Popularis Sinicae 33. Science Press, Beijing, pp 44–110Google Scholar
  71. Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  72. Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs in genome size evolution in Brassicaceae. Molec Biol Evol 21:85–98Google Scholar
  73. Mandáková T, Lysak MA (2008) Chromosomal phylogeny and caryotype evolution in x = 7 crucifer species (Brassicaceae). The Plant Cell 20:2559–2570PubMedCrossRefGoogle Scholar
  74. Mengoni A, Baker AJM, Bazzicalupo M, Reeves RD, Adigüzel N, Chianni E, Galardi F, Gabbrielli R, Gonelli C (2003) Evolutionary dynamics of nickel hyperaccumulation in Alyssum revealed by its nrDNA analysis. New Phytol 159:691–699CrossRefGoogle Scholar
  75. Mitchell AD, Heenan PB (2000) Systematic relationships of New Zealand endemic Brassicaceae inferred from nrDNA ITS sequence data. Syst Bot 25:98–105CrossRefGoogle Scholar
  76. Mitchell-Olds T, Al-Shehbaz IA, Koch M, Sharbel TF (2005) Crucifer evolution in the post-genomic era. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International, Wallingford, pp 119–137Google Scholar
  77. Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY, Franzke A (2004) Molecular evidence for bicontinental hybridogenous genome constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. N Z J Bot 91:254–261CrossRefGoogle Scholar
  78. Mummenhoff K, Al-Shehbaz IA, Bakker FT, Linder HP, Mühlhausen A (2005) Phylogeny, morphological evolution, and speciation of endemic Brassicaceae genera in the Cape flora of southern Africa. Ann Missouri Bot Gard 92:400–424Google Scholar
  79. Nabiev MM (1972) Botschantzevia Nabiev—genus novum cruciferarum. Novosti Sist Vyssh Rast 9:186–187Google Scholar
  80. O’Kane S, Schaal B, Al-Shehbaz IA (1996) The origins of Arabidopsis suecica (Brassicaceae) as indicated by nuclear rDNA sequences. Syst Bot 21:559–566CrossRefGoogle Scholar
  81. Pepper AE, Norwood LE (2001) Evolution of Caulanthus amplexicaulis var. barbarae (Brassicaceae), a rare serpentine endemic plant: a molecular phylogenetic perspective. Amer J Bot 88:1479–1489CrossRefGoogle Scholar
  82. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  83. Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien 3(2), 145–206. LeipzigGoogle Scholar
  84. Ronquist R, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  85. Roy B (2001) Patterns of association between crucifers and their flower mimic pathogens: host jumps are more common than coevolution or cospeciation. Evolution 55:41–53PubMedGoogle Scholar
  86. Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die natürlichen Pflanzenfamilien 17b. Verlag von Wilhelm Engelmann, Leipzig, pp 227–658Google Scholar
  87. O’Kane SL Jr, Al-Shehbaz IA (2003) Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear and ribosomal DNA. Ann Missouri Bot Gard 90:603–612CrossRefGoogle Scholar
  88. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4. Sinauer Associates, SunderlandGoogle Scholar
  89. Takhtajan A (1986) Floristic regions of the World. University of California Press, BerkeleyGoogle Scholar
  90. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acid Res 25:4876–4882CrossRefGoogle Scholar
  91. Vassilyeva AN (1969) Critical notes on the genus Parrya R.Br. Notul Syst Herb Inst Bot Acad Sci KazSSR 6:27–31Google Scholar
  92. Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Canad J Bot 83:467–483CrossRefGoogle Scholar
  93. Warwick SI, Al-Shehbaz IA, Price RA, Sauder C (2002) Phylogeny of Sisymbrium (Brassicaceae) based on ITS sequences of nuclear ribosomal DNA. Canad J Bot 80:1002–1017CrossRefGoogle Scholar
  94. Warwick SI, Al-Shehbaz IA, Sauder C, Harris JG, Koch M (2004a) Phylogeny of Braya and Neotorularia (Brassicaceae) based on nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Canad J Bot 82:376–392CrossRefGoogle Scholar
  95. Warwick SI, Al-Shehbaz IA, Sauder C, Murray DF, Mummenhoff K (2004b) Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron sequences. Ann Missouri Bot Gard 91:99–123Google Scholar
  96. Warwick SI, Al-Shehbaz IA, Sauder C (2006a) Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. Canad J Bot 84:269–281CrossRefGoogle Scholar
  97. Warwick SI, Francis A, Al-Shehbaz IA (2006b) Brassicaceae: checklist and database on CD-ROM. Plant Syst Evol 259:249–258CrossRefGoogle Scholar
  98. Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Ann Missouri Bot Gard 94:56–78CrossRefGoogle Scholar
  99. Warwick SI, Sauder CA, Al-Shehbaz IA (2008) Phylogenetic relationships in the tribe Alysseae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Canad J Bot 86:315–336CrossRefGoogle Scholar
  100. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  101. Windham MD, Al-Shehbaz IA (2006) New and noteworthy species of Boechera (Brassicaceae) I: sexual diploids. Harvard Pap Bot 11:61–88CrossRefGoogle Scholar
  102. Windham MD, Al-Shehbaz IA (2007a) New and noteworthy species of Boechera (Brassicaceae) II: apomictic hybrids. Harvard Pap Bot 11:257–274CrossRefGoogle Scholar
  103. Windham MD, Al-Shehbaz IA (2007b) New and noteworthy species of Boechera (Brassicaceae) III: additional sexual diploids and apomictic hybrids. Harvard Pap Bot 12:235–257CrossRefGoogle Scholar
  104. Yang YW, Lai KN, Tai PY, Ma DP, Li WH (1999) Molecular phylogenetic studies of Brassica, Rorippa, Arabidopsis, and allied genera based on the internal transcribed spacer region of 18S–25S rDNA. Molec Phylogenet Evol 13:455–462PubMedCrossRefGoogle Scholar
  105. Zhou TY, Lu LL, Yang G, Al-Shehbaz IA (2001) Brassicaceae (Cruciferae). In: Wu ZY, Raven PH (eds) Flora of China 8. Science Press, Beijing, and Missouri Botanical Garden Press, St Louis, pp 1–193Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dmitry A. German
    • 1
    • 5
  • Nikolai Friesen
    • 2
  • Barbara Neuffer
    • 3
  • Ihsan A. Al-Shehbaz
    • 4
  • Herbert Hurka
    • 2
  1. 1.South-Siberian Botanical GardenAltai State UniversityBarnaulRussia
  2. 2.Botanical GardenUniversity of OsnabrückOsnabrückGermany
  3. 3.Department of Biology, BotanyUniversity of OsnabrückOsnabrückGermany
  4. 4.Missouri Botanical GardenSt. LouisUSA
  5. 5.Department of Functional Genomics and Proteomics, Institute of Experimental BiologyMasaryk UniversityBrnoCzech Republic

Personalised recommendations