Plant Systematics and Evolution

, Volume 282, Issue 3–4, pp 169–199

Mutational dynamics and phylogenetic utility of noncoding chloroplast DNA

Original Article
  • 999 Downloads

Abstract

Introns and spacers are a rich and well-appreciated information source for evolutionary studies in plants. Compared to coding sequences, the mutational dynamics of introns and spacers is very different, involving frequent microstructural changes in addition to substitutions of individual nucleotides. An understanding of the biology of sequence change is required for correct application of molecular characters in phylogenetic analyses, including homology assessment, alignment coding, and tree inference. The widely used term “indel” is very general, and different kinds of microstructural mutations, such as simple sequence repeats, short tandem repeats, homonucleotide repeats, inversions, inverted repeats, and deletions, need to be distinguished. Noncoding DNA has been indispensable for analyses at the species level because coding sequences usually do not offer sufficient variability. A variety of introns and spacers has been successfully applied for phylogeny inference at deeper levels (major lineages of angiosperms and land plants) in past years, and phylogenetic structure R in intron and spacer data sets usually outperforms that of coding-sequence data sets. In order to fully utilize their potential, the molecular evolution and applicability of the most important noncoding markers (the trnT–trnF region comprising two spacers and a group I intron; the trnS–G region comprising one spacer and a group II intron in trnG; the group II introns in petD, rpl16, rps16, and trnK; and the atpB–rbcL and psbA–trnG spacers) are reviewed. The study argues for the use of noncoding DNA in a spectrum of applications from deep-level phylogenetics to speciation studies and barcoding, and aims at outlining molecular evolutionary principles needed for effective analysis.

Keywords

Spacers Introns Phylogenetic structure R Molecular evolution SSRs Inversions Mutational hotspots DNA barcoding 

References

  1. Aagesen L (2004) The information content of an ambiguously alignable region, a case study of the trnL intron from the Rhamnaceae. Org Divers Evol 4:35–49CrossRefGoogle Scholar
  2. Akins RA, Lambowitz AM (1987) A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell 50:331–345PubMedCrossRefGoogle Scholar
  3. Aldrich J, Crnheey BW, Merlin E, Christopherson L (1988) The role of insertions/deletions in the evolution of the intergenic region between psbA and trnH in the chloroplast genome. Curr Genet 14:137–146PubMedCrossRefGoogle Scholar
  4. Andersson L, Rova JHE (1999) The rpsl6 intron and the phylogeny of the Rubioideae (Rubiaceae). Plant Syst Evol 214:161–186CrossRefGoogle Scholar
  5. Ansell SW, Schneider H, Pedersen N, Grundmann M, Russell SJ, Vogel JC (2007) Recombination diversifies chloroplast trnF pseudogenes in Arabidopsis lyrata. J Evol Biol 20:2400–2411PubMedCrossRefGoogle Scholar
  6. Asmussen CB, Chase MW (2001) Coding and noncoding plastid DNA in palm systematics. Am J Bot 88:1103–1117PubMedCrossRefGoogle Scholar
  7. Azuma H, Thien LB, Kawano S (1999) Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergences of the floral scents. J Plant Res 112:291–306CrossRefGoogle Scholar
  8. Backert S, Lynn Nielsen B, Börner T (1997) The mystery of the rings: structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci 2:477–483CrossRefGoogle Scholar
  9. Baker WJ, Hedderson TA, Dransfield J (2000) Molecular phylogenetics of subfamily Calamoideae (Palmae) based on nrDNA ITS and cpDNA rps16 intron sequence data. Mol Phylogenet Evol 14:195–217PubMedCrossRefGoogle Scholar
  10. Bakker FT, Culham A, Gomez-Martinez R, Carvalho J, Compton J, Dawtrea R, Gibby M (2000) Patterns of nucleotide substitution in angiosperm cpDNA trnL(UAA)-trnF(GAA) regions. Mol Biol Evol 17:1146–1155PubMedGoogle Scholar
  11. Barfuss MHJ, Samuel R, Till W, Stuessy TF (2005) Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. Am J Bot 92:337–351CrossRefGoogle Scholar
  12. Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018PubMedCrossRefGoogle Scholar
  13. Beck SG, Fleischmann A, Huaylla H, Müller KF, Borsch T (2008) Pinguicula chuquisacensis (Lentibulariaceae), a new species from the Bolivian Andes, and first insights on phylogenetic relationships among South American Pinguicula. Willdenowia 38:201–212CrossRefGoogle Scholar
  14. Benderoth M, Textor S, Windsor AJ, Mitchell-Olds T, Gereshenzon J, Kroymann J (2006) Positive selection during diversification in plant secondary metabolism. Proc Natl Acad Sci USA 103:9118–9123PubMedCrossRefGoogle Scholar
  15. Benson G (1997) Sequence alignment with tandem duplication. J Comput Biol 4:351–367PubMedCrossRefGoogle Scholar
  16. Besendahl A, Qiu YL, Lee J, Palmer JD, Bhattacharya D (2000) The cyanobacterial origin and vertical transmission of the plastid tRNALeu group-I-intron. Curr Genet 37:12–23PubMedCrossRefGoogle Scholar
  17. Biffin E, Harrington MG, Crisp MD, Craven LA, Gadek PA (2007) Structural partitioning, paired-sites models and evolution of the ITS transcript in Syzygium and Myrtaceae. Mol Phylogenet Evol 43:124–139PubMedCrossRefGoogle Scholar
  18. Birky CW Jr (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proc Natl Acad Sci USA 92:11331–11338PubMedCrossRefGoogle Scholar
  19. Björklund M (1999) Are third positions really bad? A test using vertebrate cytochrome b. Cladistics 15:191–197Google Scholar
  20. Böhle UR, Hilger HH, Martin FW (1996) Island colonization and evolution of the insular woody habit in Echium L. (Boraginaceae). Proc Natl Acad Sci USA 93:11740–11745PubMedCrossRefGoogle Scholar
  21. Boivin R, Richard M, Beauseigle D, Bousquet J, Bellemare G (1996) Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida), and diverse land plants. Mol Phylogenet Evol 6:19–29PubMedCrossRefGoogle Scholar
  22. Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Non-coding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Evol Biol 16:558–576PubMedCrossRefGoogle Scholar
  23. Borsch T, Löhne C, Müller K, Hilu KW, Wanke S, Worberg A, Barthlott W, Neinhuis C, Quandt D (2005) Towards understanding basal angiosperm diversification: recent insights using rapidly evolving genomic regions. Nova Acta Leopoldina NF 92(342):85–110Google Scholar
  24. Borsch T, Hilu KW, Wiersema JH, Löhne C, Barthlott W, Wilde V (2007) Phylogeny of Nymphaea (Nymphaeaceae): evidence from substitutions and microstructural changes of the chloroplast trnT-trnF region. Int J Plant Sci 168:639–671CrossRefGoogle Scholar
  25. Borsch T, Korotkova N, Raus T, Lobin W, Löhne C (2009) The petD group II intron as a species level marker: utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia 39:7–33CrossRefGoogle Scholar
  26. Calonje M, Martín-Bravo S, Dobeš, Gong W, Jordon-Thaden I, Kiefer C, Kiefer M, Paule J, Schmickl R, Koch MA (2009) Non-coding nuclear DNA markers in phylogenetic reconstruction. Plant Syst Evol (this volume, pp 257–280). doi:10.1007/s00606-008-0031-1
  27. Calviño CI, Downie SR (2007) Circumscription and phylogeny of Apiaceae subfamily Saniculoideae based on chloroplast DNA sequences. Mol Phylogenet Evol 44:175–191PubMedCrossRefGoogle Scholar
  28. Campagna ML, Downie SR (1998) The intron in chloroplast gene rpl16 is missing from the flowering plant families Geraniaceae, Goodeniaceae, and Plumbaginaceae. Trans Illinois State Acad Sci 91:1–11Google Scholar
  29. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552PubMedGoogle Scholar
  30. Cech TR (1988) Conserved sequences and structures of group I introns: building an active site for RNA catalysis—a review. Gene 73:259–271PubMedCrossRefGoogle Scholar
  31. Cech TR (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568PubMedCrossRefGoogle Scholar
  32. Cech TR, Herschlag D, Piccirilli JA, Pyle AM (1992) RNA catalysis by a group I ribozyme: developing a model for transition state stabilization. J Biol Chem 267:1749–17482Google Scholar
  33. Cech TR, Damberger SH, Gutell RR (1994) Representation of the secondary and tertiary structure of group I introns. Struct Biol 1:273–280CrossRefGoogle Scholar
  34. Chang C-C, Lin H-C, Lin I-P, Chow T-Y, Chen H-H, Chen W-H, Cheng C-H, Lin C-Y, Liu S-M, Chang C-C, Chaw S-M (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291PubMedCrossRefGoogle Scholar
  35. Chaw SM, Walters TW, Chang CC, Hu SH, Chen SH (2005) A phylogeny of cycads (Cycadales) inferred from chloroplast matK gene, trnK intron, and nuclear rDNA ITS region. Mol Phylogenet Evol 37:214–234PubMedCrossRefGoogle Scholar
  36. Chiang T-Y, Schaal BA (2000) Molecular evolution and phylogeny of the atpB-rbcL spacer of chloroplast DNA in the true mosses. Genome 43:417–426PubMedCrossRefGoogle Scholar
  37. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190PubMedCrossRefGoogle Scholar
  38. Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801PubMedCrossRefGoogle Scholar
  39. Corriveau JL, Coleman AW (1988) Rapid screening method to detect potential biparental inheritance of plastid DNA and results for over 200 angiosperm species. Am J Bot 75:1443–1458CrossRefGoogle Scholar
  40. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429PubMedCrossRefGoogle Scholar
  41. Cozzolino S, Cafasso D, Pellegrino G, Musacchio A, Widmer A (2003) Molecular evolution of a plastid tandem repeat locus in an orchid lineage. J Mol Evol 57:S41–S49PubMedCrossRefGoogle Scholar
  42. Crayn DM, Quinn CJ (2000) The evolution of the atpB-rbcL intergenic spacer in the Epacrids (Ericales) and its systematic and evolutionary implications. Mol Phylogenet Evol 16:238–252PubMedCrossRefGoogle Scholar
  43. Daniell H, Wurdack KJ, Kanagaraj A, Lee S-B, Saski C, Jansen RK (2008) The complete nucleotide sequence of the cassava (Manihot esculenta) chloroplast genome and the evolution of atpF in Malpighiales: RNA editing and multiple losses of a group II intron. Theor Appl Genet 116:723–737PubMedCrossRefGoogle Scholar
  44. Davies RW, Waring RB, Brown TA, Scazzocchio C (1982) Making ends meet—a model for RNA splicing in fungal mitochondria. Nature 300:719–724PubMedCrossRefGoogle Scholar
  45. Day A, Madesis P (2007) DNA replication, recombination, and repair in plastids. In: Bock R (ed) Cell and molecular biology of plastids. Topics in current genetics, vol 19. Springer, Heidelberg, pp 65–119Google Scholar
  46. Delwiche CF, Palmer JD (1997) The origin of plastids and their spread via secondary symbiosis. Plant Syst Evol 11:53–86Google Scholar
  47. Donoghue MJ, Baldwin BG, Li J, Winkworth RC (2004) Viburnum phylogeny based on chloroplast trnK intron and nuclear ribosomal ITS DNA sequences. Syst Bot 29:188–198CrossRefGoogle Scholar
  48. Downie SR, Katz-Downie DS (1999) Phylogenetic analysis of chloroplast rps16 intron sequences reveals relationships within the woody southern African Apiaceae subfamily Apioideae. Can J Bot 77:1120–1135CrossRefGoogle Scholar
  49. Downie SR, Katz-Downie D, Watson MF (2000) A phylogeny of the flowering plant family Apiaceae based on chloroplast DNA rpl16 and rpoC1 intron sequences: towards a suprageneric classification of subfamily Apioideae. Am J Bot 87:273–292PubMedCrossRefGoogle Scholar
  50. Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses of two genes and one intron from legume chloroplast genomes. Syst Bot 20:272–294CrossRefGoogle Scholar
  51. Duffy AM, Kelchner SA, Wolf PG (2009) Conservation of selection on matK following an ancient loss of its flanking intron. Gene 438:17–25PubMedCrossRefGoogle Scholar
  52. Echt CS, Deverno LL, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316CrossRefGoogle Scholar
  53. Edwards D, Horn A, Taylor D, Savolainen V, Hawkins JA (2008) DNA barcoding of a large genus, Aspalanthus L. (Fabaceae). Taxon 57:1317–1327Google Scholar
  54. Ehrendorfer F, Manen J-F, Natali A (1994) cpDNA intergene sequences corroborate restriction site data for reconstructing Rubiaceae phylogeny. Plant Syst Evol 190:245–248CrossRefGoogle Scholar
  55. Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45PubMedCrossRefGoogle Scholar
  56. Galley C, Linder HP (2007) The phylogeny of the Pentaschistis clade (Danthonioideae, Poaceae) based on chloroplast DNA, and the evolution and loss of complex characters. Evolution 61:864–884PubMedCrossRefGoogle Scholar
  57. Gielly L, Taberlet P (1996) A phylogeny of European gentians inferred from chloroplast trnL (UAA) intron sequences. Bot J Linn Soc 120:57–75Google Scholar
  58. Golenberg EM, Clegg MT, Durbin ML, Doebley J, Ma DP (1993) Evolution of a noncoding region of the chloroplast genome. Mol Phylogenet Evol 2:52–64PubMedCrossRefGoogle Scholar
  59. Goremykin VV, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2004) The chloroplast genome of Nymphaea alba: whole-genome analyses and the problem of identifying the most basal angiosperm. Mol Biol Evol 21:1445–1454PubMedCrossRefGoogle Scholar
  60. Graham SW, Olmstead RG (2000) Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. Curr Genet 37:183–188PubMedCrossRefGoogle Scholar
  61. Graham SW, Reeves PA, Burns ACE, Olmstead RG (2000) Microstructural changes in noncoding chloroplast DNA: interpretation, evolution, and utility of indels and inversions in basal angiosperm phylogenetic inference. Int J Plant Sci 161:S83–S96CrossRefGoogle Scholar
  62. Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and the tRNA-hyperediting in the mitochondrial genome of the lycophyte Isostes engelmannii. Nucl Acids Res. doi:10.1093/nar/gkp532
  63. Groeninckx I, Dessein S, Ochoterena H, Persson C, Motley TJ, Kårehed J, Bremer B, Huysmans S, Smets S (2009) Phylogeny of the herbaceous tribe Spermacoceae (Rubiaceae) based on plastid DNA data. Ann Missouri Bot Gard 96:109–132Google Scholar
  64. Grundy WN, Naylor GJ (1999) Phylogenetic inference from conserved sites alignments. J Exp Zoo 285:128–139CrossRefGoogle Scholar
  65. Gu X, Li WH (1995) The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. J Mol Evol 40:464–473PubMedCrossRefGoogle Scholar
  66. Haberle RC, Fourcade HM, Boore JL, Jansen RK (2008) Extensive rearrangements in the chloroplast genome of Trachelium caeruleum are associated with repeats in tRNA genes. J Mol Evol 66:350–361PubMedCrossRefGoogle Scholar
  67. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523PubMedGoogle Scholar
  68. Hamilton MB, Braverman JM, Soria-Hernanz DF (2003) Patterns and relative rates of nucleotide and insertion/deletion evolution at six chloroplast intergenic regions in new world species of the Lecythidaceae. Mol Biol Evol 20:1710–1721PubMedCrossRefGoogle Scholar
  69. Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, Boore JL, Jansen RK (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45:547–563PubMedCrossRefGoogle Scholar
  70. Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119PubMedCrossRefGoogle Scholar
  71. Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391PubMedCrossRefGoogle Scholar
  72. Hedderson TA, Zander RH (2007) Triquetrella mxinwana, a new moss species from South Africa, with a phylogenetic and biogeographic hypothesis for the genus. J Bryol 29:151–160CrossRefGoogle Scholar
  73. Hedenäs L (2009) Relationships among arctic and non-arctic haplotypes of the moss species Scorpidium cossonii and Scorpidium scorpioides (Calliergonaceae). Plant Syst Evol. doi:10.1007/s00606-008-0131-y
  74. Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9Google Scholar
  75. Hernández-Maqueda R, Quandt D, Werner O, Muñoz J (2008) Phylogenetic relationships and generic classification of the Grimmiaceae. Mol Phylogenet Evol 46:863–877PubMedGoogle Scholar
  76. Hillis DM (1994) Homology in molecular biology. In: Hall B (ed) Homology—the hierarchical basis of comparative biology. Academic Press, San Diego, pp 339–369Google Scholar
  77. Hilu KW, Liang H (1997) The matK gene: sequence variation and application in plant systematics. Am J Bot 84:830–839CrossRefGoogle Scholar
  78. Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell M, Alice MA, Evans R, Sauquet H, Neinhuis C, Slotta TA, Rohwer JG, Campbell CS, Chatrou L (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776CrossRefGoogle Scholar
  79. Hirao T, Watanabe A, Kurita M, Kondo T, Takata K (2008) Complete nucleotide sequence of the Cryptomeria japonica D. Don. chloroplast genome and comparative chloroplast genomics: diversified genomic structure of coniferous species. BMC Plant Biol 8:70PubMedCrossRefGoogle Scholar
  80. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217:185–194PubMedCrossRefGoogle Scholar
  81. Hoot SB, Douglas AW (1998) Phylogeny of the Proteaceae based on atpB and atpB-rbcL intergenic spacer region sequences. Aust Syst Bot 11:301–320CrossRefGoogle Scholar
  82. Hoot SB, Taylor WC, Napier NS (2006) Phylogeny and biogeography of Isoёtes (Isoёtaceae) based on nuclear and chloroplast DNA sequence data. Syst Bot 31:449–460Google Scholar
  83. Hupfer H, Swiatek M, Hornung S, Herrmann RG, Maier RM, Chiu WL, Sears B (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Mol Gen Genet 263:581–585PubMedGoogle Scholar
  84. Huttunen S, Hedenäs L, Ignatov MS, Devos N, Vanderpoorten A (2008) Origin and evolution of the northern hemisphere disjunction in the moss genus Homalothecium (Brachytheciaceae). Am J Bot 95:720–730CrossRefGoogle Scholar
  85. Jansen RK, Raubeson LA, Boore JL, DePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384PubMedCrossRefGoogle Scholar
  86. Jansen RK, Cai Z, Raubeson LA, Daniell H, DePamphilis CW, Lebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374PubMedCrossRefGoogle Scholar
  87. Jansen RK, Wojciechowski MF, Sanniyasic E, Leec SB, Daniell H (2008) Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol Phylogenet Evol 48:1204–1217PubMedCrossRefGoogle Scholar
  88. Jenkins B, Kulhanek D, Barkan A (1997) Nuclear mutations that block group II RNA splicing in maize chloroplasts reveal several intron classes with distinct requirements for splicing factors. Plant Cell 9:283–296PubMedCrossRefGoogle Scholar
  89. Johansson JT (1999) There large inversions in the chloroplast genomes and one loss of the chloroplast gene rps16 suggest an early evolutionary split in the genus Adonis (Ranunculaceae). Plant Syst Evol 218:133–143CrossRefGoogle Scholar
  90. Johnson LA, Soltis DE (1995) Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequences. Ann Missouri Bot Gard 82:149–175CrossRefGoogle Scholar
  91. Jordan WC, Courtney MW, Neigel JE (1996) Low levels of intraspecific genetic variation at a rapidly evolving chloroplast DNA locus in North American duckweeds (Lemnaceae). Am J Bot 83:430–439CrossRefGoogle Scholar
  92. Jukes TH, King JL (1971) Deleterious mutations and neutral substitutions. Nature 231:114–115PubMedCrossRefGoogle Scholar
  93. Kadereit G, Mucina L, Freitag H (2006) Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55:617–642CrossRefGoogle Scholar
  94. Kallersjö M, Farris JS, Kluge AG, Bull C (1992) Skewness and permutation. Cladistics 8:275–287CrossRefGoogle Scholar
  95. Kallersjö M, Albert V, Farris JS (1999) Homoplasy increases phylogenetic structure. Cladistics 15:91–93Google Scholar
  96. Kanno A, Hirai A (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr Genet 23:166–174PubMedCrossRefGoogle Scholar
  97. Kårehed J, Groeninckx I, Dessein S, Motley TJ, Bremer B (2008) The phylogenetic utility of chloroplast and nuclear DNA markers and the phylogeny of Rubiaceae tribe Spermacoceae. Mol Phylogenet Evol 49:843–866PubMedCrossRefGoogle Scholar
  98. Kato T, Kaneko T, Sato S, Nakamura Y, Tabata S (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res 7:323–330PubMedCrossRefGoogle Scholar
  99. Kelchner SA (2000) The evolution of noncoding chloroplast DNA and its application in plant systematics. Ann Missouri Bot Gard 87:482–498CrossRefGoogle Scholar
  100. Kelchner SA (2002) Group II introns as phylogenetic tools: structure, function, and evolutionary constraints. Am J Bot 89:1651–1669CrossRefGoogle Scholar
  101. Kelchner SA, Clark LG (1997) Molecular evolution and phylogenetic utility of the chloroplast rpl16 intron in Chusquea and the Bambusoideae (Poaceae). Mol Phylogenet Evol 8:385–397PubMedCrossRefGoogle Scholar
  102. Kelchner SA, Thomas MA (2007) Model use in phylogenetics: nine key questions. Trends Ecol Evol 22:87–94PubMedCrossRefGoogle Scholar
  103. Kelchner SA, Wendel JF (1996) Hairpins create minute inversions in noncoding regions of chloroplast DNA. Curr Genet 30:259–262PubMedCrossRefGoogle Scholar
  104. Kellermann J, Udovicic F (2008) Large indels obscure phylogeny in analysis of chloroplast DNA trnL-F sequence data: Pomaderreae (Rhamnaceae) revisited. Telopea 12:1–22Google Scholar
  105. Kim K-J, Lee HL (2005) Widespread occurrence of small inversions in the chloroplast genomes of land plants. Mol Cells 19:104–113PubMedGoogle Scholar
  106. Kim S-C, Crawford DJ, Jansen RK, Santos-Guerra A (1999) The use of a noncoding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). Plant Syst Evol 215:85–99CrossRefGoogle Scholar
  107. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  108. Kjer KM, Roshan U, Gillespie JJ (2009) Structural and evolutionary considerations for multiple sequence alignment of RNA, and the challenges for algorithms that ignore them. In: Rosenberg MS (ed) Sequence alignment: methods, models, concepts, and strategies. University of California Press, Berkeley, pp 105–149Google Scholar
  109. Knoop V (2004) The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective. Curr Genet 46:123–139PubMedCrossRefGoogle Scholar
  110. Koch M, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T (2005) Evolution of the plastidic trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22:1032–1043PubMedCrossRefGoogle Scholar
  111. Koch M, Dobeš C, Kiefer M, Schmickl R, Klimes L, Lysak MA (2007) Supernetwork identifies multiple events of plastidic trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73PubMedCrossRefGoogle Scholar
  112. Kocyan A, Zhang L-B, Schaefer H, Renner SS (2007) A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol Phylogenet Evol 44:553–577PubMedCrossRefGoogle Scholar
  113. Koller B, Delius H (1980) Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269CrossRefGoogle Scholar
  114. Korotkova N, Schneider JV, Quandt D, Worberg A, Zizka G, Borsch T (2009) Phylogeny of the eudicot order Malpighiales—analysis of a recalcitrant clade with sequences of the petD group II intron. Plant Syst Evol (this volume, pp 201–228). doi:10.1007/s00606-008-0099-7
  115. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  116. Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucl Acids Res 31:716–721PubMedCrossRefGoogle Scholar
  117. Kuhsel MG, Strickland R, Palmer JD (1990) An ancient group I intron shared by eubacteria and chloroplasts. Science 250:1570–1573PubMedCrossRefGoogle Scholar
  118. Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62CrossRefGoogle Scholar
  119. Lee J, Hymowitz T (2001) A molecular phylogenetic study of the subtribe Glycininae (Leguminosae) derived from the chloroplast DNA rps16 intron sequences. Am J Bot 88:2064–2073CrossRefGoogle Scholar
  120. Lee H-J, Jansen RK, Chumley TW, Kim K-J (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161–1180PubMedCrossRefGoogle Scholar
  121. Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TM, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein Zone. Mol Biol Evol 22:1948–1963PubMedCrossRefGoogle Scholar
  122. Lehmann K, Schmidt U (2003) Group II introns: structure and catalytic versatility of large natural ribozymes. Crit Rev Biochem Mol 38:249–303CrossRefGoogle Scholar
  123. Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221PubMedGoogle Scholar
  124. Lidholm J, Gustafsson P (1991) A three-step model for the rearrangement of the chloroplast trnK-psbA region of the gymnosperm Pinus contorta. Nucl Acids Res 19:2881–2887PubMedCrossRefGoogle Scholar
  125. Lidholm J, Szmidt A, Gustafsson P (1991) Duplication of the psbA gene in the chloroplast genome of two Pinus species. Mol Gen Genet 226:345–352PubMedCrossRefGoogle Scholar
  126. Lilly JW, Havey MJ, Jackson SA, Jiang JM (2001) Cytogenomic analyses reveal the structural plasticity of the chloroplast genome in higher plants. Plant Cell 13:245–254PubMedCrossRefGoogle Scholar
  127. Löhne C, Borsch T (2005) Molecular evolution and phylogenetic utility of the petD group II intron: a case study in basal angiosperms. Mol Biol Evol 22:317–332PubMedCrossRefGoogle Scholar
  128. Löhne C, Borsch T, Wiersema JH (2007) Phylogenetic analysis of Nymphaeales using fast-evolving and noncoding chloroplast markers. Bot J Linn Soc 154:141–163CrossRefGoogle Scholar
  129. Long DG, Möller M, Preston J (2000) Phylogenetic relationships of Asterella (Aytoniaceae, Marchantiopsida) inferred from chloroplast DNA sequences. Bryologist 103:625–644CrossRefGoogle Scholar
  130. Lugo SK, Kunnimalaiyaan M, Singh NK, Niesen BL (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. Plant Sci 166:151–161CrossRefGoogle Scholar
  131. Malek O, Knoop V (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609PubMedCrossRefGoogle Scholar
  132. Manen JF (2000) Relaxation of evolutionary constraints in promoters of the plastid gene atpB in a particular Rubiaceae lineage. Plant Syst Evol 224:235–241CrossRefGoogle Scholar
  133. Manen JF, Natali A (1995) Comparison of the evolution of ribulose-1,5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae). J Mol Evol 41:920–927PubMedCrossRefGoogle Scholar
  134. Manen JF, Natali A, Ehrendorfer F (1994a) Phylogeny of Rubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. Plant Syst Evol 190:195–211CrossRefGoogle Scholar
  135. Manen J-F, Savolainen V, Simon P (1994b) The atpB and rbcL promoters in plastid DNAs of a wide dicot range. J Mol Evol 38:577–582PubMedCrossRefGoogle Scholar
  136. Martin W, Stoebe B, Goremykin V, Hapsmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165PubMedCrossRefGoogle Scholar
  137. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedCrossRefGoogle Scholar
  138. McCauley DE (1994) Contrasting the distribution of chloroplast DNA and allozyme polymorphism among local populations of Silene alba—implications for studies of gene flow in plants. Proc Natl Acad Sci USA 91:8127–8131PubMedCrossRefGoogle Scholar
  139. McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 8:130PubMedCrossRefGoogle Scholar
  140. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516PubMedCrossRefGoogle Scholar
  141. Meimberg H, Wistuba A, Dittrich P, Heubl G (2001) Molecular phylogeny of Nepenthaceae based on cladistic analysis of plastid trnK intron sequence data. Plant Biol 3:164–175CrossRefGoogle Scholar
  142. Meimberg H, Thalhammer S, Brachmann A, Heubl G (2006) Comparative analysis of a translocated copy of the trnK intron in carnivorous family Nepenthaceae. Mol Phylogent Evol 39:478–490CrossRefGoogle Scholar
  143. Michel F, Westhof E (1990) Modeling of the 3-dimensional architecture of group-I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610PubMedCrossRefGoogle Scholar
  144. Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30PubMedCrossRefGoogle Scholar
  145. Michelangeli FA, Davis JI, Stevenson DW (2003) Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Am J Bot 90:93–106CrossRefGoogle Scholar
  146. Miller JT, Bayer RJ (2003) Molecular phylogenetics of Acacia subgenera Acacia and Aculeiferum (Fabaceae: Mimosoideae), based on the chloroplast matK coding sequence and flanking trnK intron spacer regions. Austral Syst Bot 16:27–33CrossRefGoogle Scholar
  147. Miyata Y, Sugita C, Maruyama K, Sugita M (2008) RNA editing in the anticodon of tRNALeu (CAA) occurs before group I intron splicing in plastids of a moss Takakia lepidozioides S. Hatt. & Inoue. Plant Biol 10:250–255PubMedCrossRefGoogle Scholar
  148. Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE (2006) Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol 6:17PubMedCrossRefGoogle Scholar
  149. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363–19368PubMedCrossRefGoogle Scholar
  150. Morrison DA (2009a) Why would phylogeneticists ignore computerized sequence alignment? Syst Bot 58:150–158Google Scholar
  151. Morrison DA (2009b) A framework for phylogenetic sequence alignment. Plant Syst Evol (this volume, pp 127–149). doi:10.1007/s00606-008-0072-5
  152. Mort ME, Archibald JK, Randle CP, Levsen ND, O’Leary TR, Topalov K, Wiegand CM, Crawford DJ (2007) Inferring phylogeny at low taxonomic levels: utility of rapidly evolving cpDNA and nuclear ITS loci. Am J Bot 94:173–183CrossRefGoogle Scholar
  153. Morton BR, Clegg MT (1993) A chloroplast DNA mutational hotspot and gene conversion in a noncoding region near rbcL in the grass family (Poaceae). Curr Genet 24:357–365PubMedCrossRefGoogle Scholar
  154. Morton BR, Clegg MT (1995) Neighboring base composition is strongly correlated with base substitution bias in a region of the chloroplast genome. J Mol Evol 41:597–603PubMedCrossRefGoogle Scholar
  155. Müller K, Borsch T (2005a) Phylogenetics of Utricularia (Lentibulariaceae) and molecular evolution of the trnK intron in a lineage with high mutational rates. Plant Syst Evol 250:39–67CrossRefGoogle Scholar
  156. Müller K, Borsch T (2005b) Phylogenetics of Amaranthaceae based on matK/trnK sequence data: evidence from Parsimony, Likelihood, and Bayesian analyses. Ann Missouri Bot Gard 92:66–102Google Scholar
  157. Müller KF, Borsch T, Hilu KW (2006) Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F and rbcL in basal angiosperms. Mol Phylogenet Evol 41:99–117PubMedCrossRefGoogle Scholar
  158. Murdock AG (2008) Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. Am J Bot 95:626–641CrossRefGoogle Scholar
  159. Nelissen B, van de Peer Y, Wilmotte A, De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173PubMedGoogle Scholar
  160. Nikolaou C, Almirantis Y (2006) Deviations from Chargaff’s second parity rule in organellar DNA—insights into the evolution of organellar genomes. Gene 381:34–41PubMedCrossRefGoogle Scholar
  161. Ochoterena H (2009) Homology in coding and noncoding DNA sequences: a parsimony perspective. Plant Syst Evol (this volume, pp 151–168). doi:10.1007/s00606-008-0095-y
  162. Ogden TH, Rosenberg MS (2006) Multiple sequence alignment accuracy and phylogenetic inference. Syst Biol 55:314–328CrossRefGoogle Scholar
  163. Ogihara Y, Yamazaki Y, Murai K, Kanno A, Terachi T, Shiina T, Miyashita N, Nasuda S, Nakamura C, Mori N, Takumi S, Murata M, Futo S, Tsunewaki K (2005) Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl Acids Res 33:6235–6250PubMedCrossRefGoogle Scholar
  164. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of the liverwort Marchantia polymorpha chloroplast DNA. Nature 322:572–574CrossRefGoogle Scholar
  165. Olsson S, Buchbender V, Huttunen S, Enroth J, Hedenäs L, Quandt D (2009) Evolution of the Neckeraceae (Bryophyta): resolving the backbone phylogeny and identifying ancestral character states. Syst Biodiv 7 (in press)Google Scholar
  166. Ostersetzer O, Cooke AM, Watkins KP, Barkan A (2005) CRS1, a chloroplast group II intron splicing factor, promotes intron folding through specific interactions with two intron domains. Plant Cell 17:241–255PubMedCrossRefGoogle Scholar
  167. Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410CrossRefGoogle Scholar
  168. Pacak A, Szweykowsska-Kulinska Z (2000) Molecular data concerning alloploid character and the origin of chloroplast and mitochondrial genomes in the liverwort species Pellia borealis. J Plant Biotechnol 2:101–108Google Scholar
  169. Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence of character state data. Syst Biol 53:571–581PubMedCrossRefGoogle Scholar
  170. Palmer JD (1983) Chloroplast DNA exists in two orientations. Nature 301:92–93CrossRefGoogle Scholar
  171. Palmer JD (1985) Comparative organisation of chloroplast genomes. Annu Rev Genet 19:325–354PubMedCrossRefGoogle Scholar
  172. Palmer JD (1991) Plastid chromosomes: structure and evolution. In: Bogorad L, Vasil IK (eds) The molecular biology of plastids. Academic Press, San Diego, pp 5–53Google Scholar
  173. Pedersen N, Hedenäs S (2003) Phylogenetic investigations of a well supported clade within the acrocarpous moss family Bryaceae: evidence from seven chloroplast DNA sequences and morphology. Plant Syst Evol 240:115–132CrossRefGoogle Scholar
  174. Penny D, Hendy MD (1985) The use of tree comparison metrics. Syst Zool 34:75–82CrossRefGoogle Scholar
  175. Perret M, Chautems A, Spichiger R, Kite G, Savolainen V (2003) Systematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS1. Am J Bot 90:445–460CrossRefGoogle Scholar
  176. Persson C (2000) Phylogeny of Gardenieae (Rubiaceae) based on chloroplast DNA sequences from the rps16 intron and trnL(UAA)-F(GAA) intergenic spacer. Nord J Bot 20:257–270CrossRefGoogle Scholar
  177. Pirie MD, Vargas MPB, Botermans M, Bakker FT, Chatrou LW (2007) Ancient paralogy in the cpDNA trnL-F region in Annonaceae: implications for plant molecular systematics. Am J Bot 94:1003–1016CrossRefGoogle Scholar
  178. Pombert JF, Lemieux C, Turmel M (2006) The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 4:3PubMedCrossRefGoogle Scholar
  179. Provan J, Soranzo N, Wilson NJ, Goldstein DB, Powell W (1999) A low mutation rate for chloroplast microsatellites. Genetics 153:943–947PubMedGoogle Scholar
  180. Pyle AM, Lambowitz AM (2006) Group II introns: ribozymes that splice RNA and invade DNA. In: Gesteland RF, Cech TR, Atkins JF (eds) The RNA world. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 449–505Google Scholar
  181. Qin PZ, Pyle AM (1998) The architectural organization and mechanistic function of group II intron structural elements. Curr Opin Struct Biol 8:301–308PubMedCrossRefGoogle Scholar
  182. Qiu Y-L, Palmer JD (2004) Many independent origins of trans splicing of a plant mitochondrial group II intron. J Mol Evol 59:722–724CrossRefGoogle Scholar
  183. Qiu Y-L, Lee J, Bernasconi-Quandroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase MW (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407PubMedCrossRefGoogle Scholar
  184. Quandt D, Stech M (2004) Molecular evolution and phylogenetic utility of the chloroplast trnT-trnF region in bryophytes. Plant Biol 6:545–554PubMedCrossRefGoogle Scholar
  185. Quandt D, Stech M (2005) Molecular evolution of the trnL(UAA) intron in bryophytes. Mol Phylogenet Evol 36:429–443PubMedCrossRefGoogle Scholar
  186. Quandt D, Müller K, Huttunen S (2003) Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Plant Biol 5:400–410CrossRefGoogle Scholar
  187. Quandt D, Müller K, Stech M, Hilu KW, Frey W, Frahm JP, Borsch T (2004) Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst Bot Missouri Bot Gard 98:13–37Google Scholar
  188. Quandt D, Wanke S, Müller K, Hernández-Maqueda R, Stech M, Löhne C, Hilu KW, Borsch T (2006) The role of hairpins in molecular evolution. Abstract no. 738. Presented at “Botany 2006,” BSA international conference, Chico, CA, USA, July 28-August 2, 2006. Abstract no. 738 Google Scholar
  189. Rahmanzadeh R, Müller K, Fischer E, Bartels D, Borsch T (2005) Linderniaceae and Gratiolaceae are further lineages distinct from Scrophulariaceae (Lamiales). Plant Biol 7:67–78PubMedCrossRefGoogle Scholar
  190. Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699PubMedCrossRefGoogle Scholar
  191. Raubeson LA, Jansen RK (2005) Chloroplast genomes of plants. In: Henry RJ (ed) Plant diversity and evolution: genotypic and phenotypic variation in higher plants. CAB International, Cambridge, pp 45–68CrossRefGoogle Scholar
  192. Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174PubMedCrossRefGoogle Scholar
  193. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140CrossRefGoogle Scholar
  194. Renner SS (1999) Circumscription and phylogeny of the Laurales: evidence from molecular and morphological data. Am J Bot 86:1301–1315PubMedCrossRefGoogle Scholar
  195. Renner SS, Chanderbali AS (2000) What is the relationship among Hernadiaceae, Lauraceae, and Monimiaceae, and why is this question so difficult to answer? Int J Plant Sci 161:S109–S119CrossRefGoogle Scholar
  196. Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am J Bot 87:1309–1324PubMedCrossRefGoogle Scholar
  197. Rokas A, Carroll SB (2008) Frequent and widespread parallel evolution of protein sequences. Mol Biol Evol 25:1943–1953PubMedCrossRefGoogle Scholar
  198. Roper JM, Hansen SK, Wolf PG, Karol KG, Mandoli DF, Everett KDE, Kuehl J, Boore JL (2007) The complete plastid genome sequence of Angiopteris erecta (G. Forst.) Hoffm. (Marattiaceae). Am Fern J 97:95–106CrossRefGoogle Scholar
  199. Sakai M, Kanazawa A, Fujii A, Thseng FS, Abe J, Shimamoto Y (2003) Phylogenetic relationships of the chloroplast genomes in the genus Glycine inferred from four intergenic spacer sequences. Plant Syst Evol 239:29–54CrossRefGoogle Scholar
  200. Sakai A, Takano H, Kuroiwa T (2004) Organelle nuclei in higher plants: structure, composition, function, and evolution. Int Rev Cytol 238:59–118PubMedCrossRefGoogle Scholar
  201. Sánchez del-Pino I, Borsch T, Motley TJ (2009) trnL-F and rpl16 sequence data and dense taxon sampling reveal monophyly of unilocular anthered Gomphrenoideae (Amaranthaceae), and an improved picture of their internal relationships. Syst Bot 34:57–67Google Scholar
  202. Sang T, Crawford D, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefGoogle Scholar
  203. Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA barcoding markers for species identification of Cycads. PLoS ONE 2(11):e1154. doi:10.1371/journal.pone.0001154 PubMedCrossRefGoogle Scholar
  204. Sauquet H, Doyle JA, Scharaschkin T, Borsch T, Hilu KW, Chatrou LW, Le Thomas A (2003) Phylogenetic analysis of Magnoliales and Myristicaceae based on multiple data sets: implications for character evolution. Bot J Linn Soc 142:125–186CrossRefGoogle Scholar
  205. Savolainen V, Spichiger R, Manen JF (1997) Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. Mol Phylogenet Evol 7:145–157PubMedCrossRefGoogle Scholar
  206. Scheen A-C, Brochmann C, Brysting AK, Elven R, Morris A, Soltis DE, Soltis PS, Albert VA (2004) Northern hemisphere biogeography of Cerastium (Caryophyllaceae): insights from phylogenetic analysis of noncoding plastid nucleotide sequences. Am J Bot 91:943–952CrossRefGoogle Scholar
  207. Schmickl R, Kiefer C, Dobeš C, Koch MA (2009) Evolution of trnF(GAA) pseudogenes in cruciferous plants. Plant Syst Evol (this volume, pp 229–240). doi:10.1007/s00606-008-0030-2
  208. Seberg O, Petersen G (2009) How many loci does it take to DNA barcode a crocus? PloS ONE 4(2):e4598. doi:10.1371/journal.pone.0004598 PubMedCrossRefGoogle Scholar
  209. Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82PubMedCrossRefGoogle Scholar
  210. Shaw J, Lickey E, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166CrossRefGoogle Scholar
  211. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefGoogle Scholar
  212. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome—its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  213. Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462PubMedCrossRefGoogle Scholar
  214. Simmons MP, Zhang LB, Webb CT, Reeves A (2006) How can third codon positions outperform first and second codon positions in phylogenetic inference? An empirical example from the seed plants. Syst Biol 55:245–258PubMedCrossRefGoogle Scholar
  215. Small RL, Ryborn JA, Cronn RC, Seelanan T, Wendel JF (1998) The tortoise and the hare: choosing between noncoding plastome and nuclear Adh sequences for phylogenetic reconstruction in a recently diverged plant group. Am J Bot 85:1301–1315CrossRefGoogle Scholar
  216. Small RL, Lickey EB, Shawa J, Hauk WD (2005) Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Mol Phylogenet Evol 36:509–522PubMedCrossRefGoogle Scholar
  217. Soejima A, Wen J (2006) Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Am J Bot 93:278–287CrossRefGoogle Scholar
  218. Soltis DE, Soltis PS (1998) Choosing an approach and appropriate gene for phylogenetic analysis. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants II. DNA sequencing. Kluwer, London, pp 1–42Google Scholar
  219. Sotiaux A, Enroth J, Olsson S, Quandt D, Vanderpoorten A (2009) When morphology and molecules tell us different stories: a case-in-point with Leptodon corsicus, a new and unique endemic moss species from Corsica. J Bryol (in press)Google Scholar
  220. Stech M, Quandt D (2006) Molecular evolution and phylogenetic utility of the chloroplast atpB-rbcL spacer in bryophytes. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 2B. Science Publishers, Enfield, pp 409–431Google Scholar
  221. Stech M, Quandt D, Frey W (2003) Molecular evolution of the chloroplast DNA trnL-trnF region in the hornworts (Anthocerotophyta) and its phylogenetic implications. J Plant Res 116:389–398PubMedCrossRefGoogle Scholar
  222. Štorchová H, Olson MS (2004) Comparison between mitochondrial and chloroplast DNA variation in the native range of Silene vulgaris. Mol Ecol 13:2909–2910PubMedCrossRefGoogle Scholar
  223. Štorchová H, Olson MS (2007) The architecture of the chloroplast psbA-trnH noncoding region in angiosperms. Plant Syst Evol 268:235–256CrossRefGoogle Scholar
  224. Su Y-J, Wang T, Zheng B, Jiang Y, Ouyang P-Y, Chen G-P (2005) Genetic variation and phylogeographical patterns in Alsophila podophylla from southern China based on cpDNA atpB-rbcL sequence data. Am Fern J 95:68–97CrossRefGoogle Scholar
  225. Sugiura M, Hirose T, Sugita M (1998) Evolution and mechanisms of translation in chloroplasts. Annu Rev Genet 32:437–459PubMedCrossRefGoogle Scholar
  226. Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucl Acids Res 31:5324–5331PubMedCrossRefGoogle Scholar
  227. Swofford DL (2001) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  228. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, Sunderland, pp 407–514Google Scholar
  229. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  230. Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E (2007) Power and limitations of the chloroplast trnL(UAA) intron for plant DNA barcoding. Nucl Acids Res 35:e14PubMedCrossRefGoogle Scholar
  231. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577PubMedCrossRefGoogle Scholar
  232. Tan B, Liu K, Yue XL, Liu F, Chen JM, Wang QF (2008) Chloroplast DNA variation and phylogeographic patterns in the Chinese endemic marsh herb Sagittaria potamogetifolia. Aquat Bot 89:372–378CrossRefGoogle Scholar
  233. Tautz D, Trick M, Dover GA (1986) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322:652–656PubMedCrossRefGoogle Scholar
  234. Tesfaye K, Borsch T, Govers K, Bekele E (2007) Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. Genome 50:1112–1129PubMedCrossRefGoogle Scholar
  235. Teshima KM, Innan H (2008) Neofunctionalization of duplicated genes under the pressure of gene conversion. Genetics 178:1385–1398PubMedCrossRefGoogle Scholar
  236. Testolin R, Cipriani G (1997) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in the genus Actinidia. Theor Appl Genet 94:897–903CrossRefGoogle Scholar
  237. Thorne JL, Kishino H, Felsenstein J (1992) Inching towards reality: an improved likelihood model of sequence evolution. J Mol Evol 34:3–16PubMedCrossRefGoogle Scholar
  238. Timme TE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:301–312Google Scholar
  239. Toor N, Hausner G, Zimmerly S (2001) Coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases. RNA 7:1142–1152PubMedCrossRefGoogle Scholar
  240. Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232:206–214PubMedGoogle Scholar
  241. Tsuji S, Ueda K, Nishiyama T, Hasebe M, Yoshikawa S, Konagaya A, Nishiuchi T, Yamaguchi K (2007) The chloroplast genome from a lycophyte (microphyllophyte), Selaginella uncinata, has a unique inversion, transpositions and many gene losses. J Plant Res 120:281–290PubMedCrossRefGoogle Scholar
  242. Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaeotosphaeridium globosum: insights into the timing of the events that reconstructed organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280PubMedCrossRefGoogle Scholar
  243. Turmel M, Otis C, Lemieux C (2006) The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol 23:1324–1338PubMedCrossRefGoogle Scholar
  244. Van Ham RCHJ, ‘t Hart H, Mes THM, Sandbrink JM (1994) Molecular evolution of noncoding regions of the chloroplast genome in the Crassulaceae and related species. Curr Genet 25:558–566PubMedCrossRefGoogle Scholar
  245. Vanderpoorten A, Long DG (2006) Budding speciation and neotropical origin of the Azorean endemic liverwort, Leptoscyphus azoricus. Mol Phylogenet Evol 40:73–83PubMedCrossRefGoogle Scholar
  246. Verbruggen H, Theriot E (2008) Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur J Phycol 43:229–252CrossRefGoogle Scholar
  247. Vijverberg K, Bachmann K (1999) Molecular evolution of a tandemly repeated trnF(GAA) gene in the chloroplast genome of Microseris (Asteraceae) and the use of structural mutations in phylogenetic analysis. Mol Biol Evol 16:1329–1340PubMedGoogle Scholar
  248. Vogel J, Börner T, Hess W (1999) Comparative analysis of splicing of the complete set of chloroplast group II introns in three higher plant mutants. Nucleic Acids Res 27:3866–3874PubMedCrossRefGoogle Scholar
  249. Wakasugi T, Tsudsuki J, Ito S, Nakashima K, Tsudsuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798PubMedCrossRefGoogle Scholar
  250. Wakasugi T, Nishikawa A, Yamada K, Sugiura M (1998) Complete nucleotide sequence of the plastid genome from a fern, Psilotum nudum. Endocytobiosis Cell Res 13(Suppl):147 Google Scholar
  251. Wanke S, Quandt D, Neinhuis C (2006) Universal primers for a large cryptically simple cpDNA microsatellite region in Aristolochia. Mol Ecol Notes 6:1051–1053CrossRefGoogle Scholar
  252. Wanke S, Jaramillo MA, Borsch T, Samain MS, Quandt D, Neinhuis C (2007) Evolution of the Piperales—matK and trnK intron sequence data reveals a lineage specific resolution contrast. Mol Phylogenet Evol 42:477–497PubMedCrossRefGoogle Scholar
  253. Watanabe K, Kajita T, Murata J (2006) Chloroplast DNA variation and geographical structure of the Aristolochia kaempferi group (Aristolochiaceae). Am J Bot 93:442–453CrossRefGoogle Scholar
  254. Weising K, Gardner RC (1999) A set of universal PCR primers for the analysis of simple sequence repeat polymorphisms in chloroplast genomes of dicotyledonous angiosperms. Genome 42:9–19PubMedCrossRefGoogle Scholar
  255. Westhoff P, Herrmann RG (1988) Complex RNA maturation in the chloroplast: the psbB operon from spinach. Eur J Biochem 171:551–564PubMedCrossRefGoogle Scholar
  256. Wicke S, Quandt D (2009) Universal primers for amplification of the trnK/matK region in land plants. Anales Jard Bot Madrid (in press)Google Scholar
  257. Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, DePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401PubMedCrossRefGoogle Scholar
  258. Wissemann V, Ritz CM (2005) The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot J Linn Soc 147:275–290CrossRefGoogle Scholar
  259. Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res 10:59–65PubMedCrossRefGoogle Scholar
  260. Wolf PG, Karol KG, Mandoli DF, Kuehl J, Arumuganathan K, Ellis MW, Mishler BD, Kelch DG, Olmstead RG, Boore JL (2005) The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350:117–128PubMedCrossRefGoogle Scholar
  261. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedCrossRefGoogle Scholar
  262. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedCrossRefGoogle Scholar
  263. Won H, Renner SS (2005) The chloroplast trnT-trnF region in the seed plant lineage Gnetales. J Mol Evol 61:425–436PubMedCrossRefGoogle Scholar
  264. Worberg A, Quandt D, Barniske A-M, Löhne C, Hilu KW, Borsch T (2007) Phylogeny of basal eudicots: insights from noncoding and rapidly evolving DNA. Org Divers Evol 7:55–77CrossRefGoogle Scholar
  265. Worberg A, Alford MH, Quandt D, Borsch T (2009) Huerteales sister to Brassicales plus Malvales, and newly circumscribed to include Dipentodon, Gerrardina, Huertea, Perrottetia, and Tapiscia. Taxon 58:468–478Google Scholar
  266. Wu CS, Wang YN, Liu SM, Chaw SM (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 24:1366–1379PubMedCrossRefGoogle Scholar
  267. Wu CH, Lai YT, Lin CP, Wang YN, Chaw SM (2009) Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol. doi:10.1016/j.ympev.2008.12.026
  268. Xu MQ, Kathe SD, Goodrich-Blair H, Nierzwicki-Bauer SA, Shub DA (1990) Bacterial origin of a chloroplast intron: conserved self-splicing group-I introns in cyanobacteria. Science 250:1566–1570PubMedCrossRefGoogle Scholar
  269. Xu DH, Sakai AJ, Kanazawa A, Shimamoto A, Shimamoto Y (2000) Sequence variation of noncoding regions of chloroplast DNA of soybean and related wild species and its implications for the evolution of different chloroplast haplotypes. Theor Appl Genet 101:724–732CrossRefGoogle Scholar
  270. Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins: identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465PubMedCrossRefGoogle Scholar
  271. Yang F-S, Wang X-Q (2007) Extensive length variation in the cpDNA trnT-trnF region of hemiparasitic Pedicularis and its phylogenetic implications. Plant Syst Evol 264:251–264CrossRefGoogle Scholar
  272. Young ND, dePamphilis CW (2000) Purifying selection detected in the plastid gene matK and flanking ribozyme regions within a group II intron of nonphotosynthetic plants. Mol Biol Evol 17:1933–1941PubMedGoogle Scholar
  273. Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Botanischer Garten und Botanisches Museum Berlin-Dahlem und Institut für Biologie/BotanikFreie Universität BerlinBerlinGermany
  2. 2.Nees-Institut für Biodiversität der PflanzenUniversität BonnBonnGermany

Personalised recommendations