Plant Systematics and Evolution

, Volume 282, Issue 1–2, pp 87–102 | Cite as

Crystal diversity and macropatterns in leaves of Oleaceae

  • Nels R. Lersten
  • Harry T. HornerEmail author
Original Article


Oleaceae leaves surveyed from herbarium specimens of 240 species from 23 genera were rehydrated, bleached, processed into xylol, mounted unstained, and viewed microscopically between crossed polarizers. Occurrence of five crystal types and two variants (tiny acicular crystals and sphaerites) within one family is unusual. Number of crystal types within a single species was one (108 spp.), two (53 spp.), three (51 spp.), four (15 spp.), and five (6 spp.). Seven species lacked crystals. The tiny acicular crystal variant was most common (167 spp.), followed by prisms (67 spp.), raphides (65 spp.), druses (61 spp.), sphaerites variant (50 spp.), styloids (36 spp.), and crystal sand (21 spp.). Epidermal crystals were common (155 spp.), with epidermal crystals clustering at base of trichomes in 21 species. Jasminum was exceptional in having mostly druses and almost no crystals around vascular bundles. Most Oleaceae crystals are tiny, usually about 5 μm in length, except for larger styloids and raphides.


Acicular crystals Crystal macropatterns Crystal sand Druses Leaves Oleaceae Prisms Raphides Sphaerites 



The authors thank their respective departments for partial support of this research, the staff of the Microscopy and NanoImaging Facility, Iowa State University (ISU), where the work was done, and the directors and curators at Field Museum, Chicago; Missouri Botanical Garden, St. Louis; and Ada Hayden Herbarium (ISU), and curator Deborah Lewis for special assistance, for permission to collect leaf samples from selected herbarium specimens.


  1. Alquati P (1906) Studi anatomici e morfologici sull'ulivo (Olea europaea). Atti della Società Lingustica di Scienze Naturali e Geografiche, Genova 17:124–148Google Scholar
  2. Angiosperm Phylogeny Group (2003) An update of the angiosperm phylogeny classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  3. Baas P, Esser PM, Van der Westen MET, Zandee M (1988) Wood anatomy of the Oleaceae. IAWA Bull 9:103–182Google Scholar
  4. Francheschi VR, Horner HT Jr (1980) Calcium oxalate crystals in plants. Bot Rev 46:361–427CrossRefGoogle Scholar
  5. Francheschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Pl Biol 56:41–71CrossRefGoogle Scholar
  6. Horner HT, Wanke S, Samain M-S (2009) Evolution and systematic value of leaf crystal patterns: a phylogenetic approach in the genus Peperomia (Piperaceae). Int J Pl Sci 170:343–354CrossRefGoogle Scholar
  7. Kiew R (1984) The genus Myxopyrum L. (Oleaceae). Blumea 29:499–512Google Scholar
  8. Kiew R, Che Su I (1982) Comparative study of leaf anatomy of Malaysian species of Chionanthus and Olea (Oleaceae) with special reference to foliar sclereids. J Linn Soc Bot 84:79–101CrossRefGoogle Scholar
  9. Lersten NR, Horner HT (2000) Calcium oxalate crystal types and trends in their distribution patterns in leaves of Prunus (Rosaceae: Prunoideae). Pl Syst Evol 224:83–96CrossRefGoogle Scholar
  10. Lersten NR, Horner HT (2005) Macropattern of styloid and druse crystals in Quillaja (Quillajaceae) bark and leaves. Int J Pl Sci 166:705–711CrossRefGoogle Scholar
  11. Lersten NR, Horner HT (2007) Calcium oxalate crystals in tribe Galegeae (Leguminosae), including foliar crystal macropattern development in Caragana frutex. Can J Bot 85:394–403CrossRefGoogle Scholar
  12. Lersten NR, Horner HT (2008a) Crystal macropatterns in leaves of Fagaceae and Nothofagaceae: a comparative study. Pl Syst Evol 271:239–253CrossRefGoogle Scholar
  13. Lersten NR, Horner HT (2008b) Subepidermal idioblasts and crystal macropattern in leaves of Ticodendron (Ticodendraceae). Pl Syst Evol 276:255–260CrossRefGoogle Scholar
  14. Metcalfe CR (1983) Secreted mineral substances-crystals. In: Metcalfe CR, Chalk L (eds) Anatomy of the dicotyledons, vol II, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  15. Metcalfe CR, Chalk L (1950) Anatomy of the dicotyledons, vol 2. Clarendon Press, OxfordGoogle Scholar
  16. Napp-Zinn K (1973–1974) Anatomie des Blattes II. Blattanatomie der Angiospermen. Handbuch Pflanzenanatomie Bd. VIII, Teil 2A, Lieferung 1,2. Gebrüder Borntraeger, BerlinGoogle Scholar
  17. Pirotta R (1885) Contribuzione all’anatomia comparata della foglia. I. Oleaceae. Annu R Ist Bot Roma 2:22–47Google Scholar
  18. Prychid CJ, Rudall PJ (1999) Calcium oxalate crystals in monocotyledons: a review of their structure and systematics. Ann Bot 84:725–739CrossRefGoogle Scholar
  19. Schneider G, Löbenberg L (1972) Zur Morphologie und anatomie der Olivenblätter. Pl Med 22:117–121CrossRefGoogle Scholar
  20. Solereder H (1908) Systematic anatomy of the dicotyledons. In: Boodle IA, Fritsch FF (eds) 2 vols. Engl Transl, Clarendon Press, OxfordGoogle Scholar
  21. Wallander E, Albert VA (2000) Phylogeny and classification of Oleaceae based on RPS16 and TRNL-F sequence data. Am J Bot 87:1827–1841PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Ecology, Evolution and Organismal BiologyIowa State UniversityAmesUSA
  2. 2.Department of Genetics, Development and Cell BiologyIowa State UniversityAmesUSA
  3. 3.Microscopy and NanoImaging FacilityIowa State UniversityAmesUSA

Personalised recommendations