Plant Systematics and Evolution

, Volume 282, Issue 1–2, pp 57–70 | Cite as

Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis

  • Majid Sharifi Tehrani
  • Mohsen Mardi
  • Jamal Sahebi
  • Pilar Catalán
  • Antonio Díaz-Pérez
Original Article


Tall fescue (Festuca arundinacea Schreb. subsp. arundinacea) is one of the most economically important forage grasses in cold and temperate regions of the world. In this study, we have assessed the genetic diversity and structure of wild Iranian tall fescue populations. Thirty-seven individuals from nine natural populations from northern, western, and southern Iranian mountain ranges were analyzed using six genomic-SSRs and five EST-SSRs primer pairs. Our analysis has demonstrated that transcribed EST-SSR regions showed levels of polymorphism similar to genomic-SSR regions. UPGMA, repeated bisection, and model-based Bayesian STRUCTURE clustering methods coupled with neighbor-net network were used to establish six divergent groups of individuals. FST estimates among clusters showed moderate to low genetic structure. Within-group genetic diversity estimate H and partial correlations between genetic and geographic distances among populations suggested that western Zagros population was related to the rest of the Iranian individuals. The isolation-by-distance hypothesis was not supported by SSR data and the present geographical sampling.


Consensus groups Genetic variability Iran SSR Tall fescue 


  1. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83PubMedCrossRefGoogle Scholar
  2. Bor NL (1970) Gramineae. In: Rechinger KH (ed) Flora iranica, vol 70. Akademische Druk u. Verlagsanstalt, Graz, pp 1–573Google Scholar
  3. Buckler ES (1999) Phylogeographer: a tool for developing and testing phylogeographic hypotheses, 0.3 ed.
  4. Buckler ES, Goodman MM, Holtsford TP, Doebley JF, Sánchez G (2006) Phylogeography of the wild subspecies of Zea mays. Maydica 51:123–134Google Scholar
  5. Catalán P (2006) Phylogeny and evolution of Festuca L. and related genera of subtribe Loliinae (Poeae, Poaceae). In: Sharma AK, Sharma A (eds) Plant genome, biodiversity and evolution, part D, vol 1. Science Publishers, Enfield, pp 255–303Google Scholar
  6. Catalán P, Torrecilla P, Lopez-Rodriguez JA, Olmstead RG (2004) Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Mol Phylogen Evol 31:517–541CrossRefGoogle Scholar
  7. Catalán P, Segarra-Moragues JG, Palop-Esteban M, Moreno C, Gonzalez-Candelas F (2006) A Bayesian approach for discriminating among alternative inheritance hypotheses in plant polyploids: the allotetraploid origin of genus Borderea (Discoreaceae). Genetics 172:1939–1953PubMedCrossRefGoogle Scholar
  8. Chabane K, Ablett GA, Cordeiro GM, Valkoun J, Henry RJ (2005) EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet Resour Crop Evol 52:903–909CrossRefGoogle Scholar
  9. Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722CrossRefGoogle Scholar
  10. Díaz-Perez A, Sequeira M, Santos-Guerra A, Catalán P (2008) Multiple colonizations, in situ speciation, and volcanism-associated stepping-stone dispersals shaped the phylogeography of the Macaronesian red fescues (Festuca L., Gramineae). Syst Biol 57:732–749Google Scholar
  11. Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRefGoogle Scholar
  12. Dietz J (1983) Permutation tests for association between two distance matrices. Syst Zool 32:21–26CrossRefGoogle Scholar
  13. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19:11–15Google Scholar
  14. Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132PubMedCrossRefGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  16. Excoffier L (1993) Winamova v. 1.5: analysis of molecular variance. Genetics and Biometry Laboratory, University of Geneva, Geneva.
  17. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Falahati-Anbaran M, Habashi AA, Esfahany M, Mohammadi SA, Ghareyazie B (2007) Population genetic structure based on SSR markers in alfalfa (Medigaco sativa L.) from various regions contiguous to the centres of origin of the species. J Genet 86:59–63PubMedCrossRefGoogle Scholar
  19. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  21. Fjellheim S, Rognli OA, Fosnes K, Brochmann C (2006) Phylogeographical history of the widespread meadow fescue (Festuca pratensis Huds.) inferred from chloroplast DNA sequences. J Biogeogr 33:1470–1478CrossRefGoogle Scholar
  22. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, UKGoogle Scholar
  23. George J, Dobrowolski MP, de Jong E, Cogan NOI, Smith KF, Forster J (2006) Assessment of genetic diversity in cultivars of white clover (Trifolium repens L.) detected by SSR polymorphisms. Genome 49:919–930PubMedCrossRefGoogle Scholar
  24. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom 270:315–323CrossRefGoogle Scholar
  25. Harper JA, Thomas ID, Lovatt JA, Thomas HM (2004) Physical mapping of rDNA sites in posible diploid progenitors of polyploid Festuca species. Pl Syst Evol 245:163–168CrossRefGoogle Scholar
  26. Hewitt GM (1999) Postglacial recolonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  27. Hollingsworth PM, Ennos RA (2004) Neighbour joining trees, dominant markers and population genetic structure. Heredity 92:490–498PubMedCrossRefGoogle Scholar
  28. Humphreys MW, Yadav RS, Cairns AJ, Turner LB, Humphreys J, Skøt L (2005) A changing climate for grassland research. New Phytol 169:9–26CrossRefGoogle Scholar
  29. Huson D, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  30. Inda LA, Segarra-Moragues JG, Müler J, Peterson PM, Catalán P (2008) Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogen Evol 46:932–957CrossRefGoogle Scholar
  31. Jakobsson M, Rosenberg NA (2007a) CLUMPP software and manual. University of Michigan, Ann ArborGoogle Scholar
  32. Jakobsson M, Rosenberg NA (2007b) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:801–1806CrossRefGoogle Scholar
  33. Jauhar PP (1975) Genetic regulation of diploid-like chromosome pairing in the hexaploid species Festuca arundinacea Schreb. and F. rubra L. (Gramineae). Chromosoma 52:363–382CrossRefGoogle Scholar
  34. Jenkins TJ (1933) Interspecific and intergeneric hybrids in herbage grasses. Initial crosses. J Genet 28:205–264CrossRefGoogle Scholar
  35. Kirigwi FM, Zwonitzer JC, Mian MAR, Wang ZY, Saha M (2008) Microsatellite markers and genetic diversity assessment in Lolium temulentum. Genet Resour Crop Evol 55:105–114CrossRefGoogle Scholar
  36. Lauvergeat V, Barre P, Bonnet M, Ghesquire M (2005) Sixty simple sequence repeat markers for use in the Festuca–Lolium complex of grasses. Mol Ecol Notes 5:401–405CrossRefGoogle Scholar
  37. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369PubMedCrossRefGoogle Scholar
  38. Majidi MM, Mirlohi AF, Sayed-Tabatabaei DE (2006) AFLP analysis of genetic variation in Iranian fescue accessions. Pak J Biol Sci 9:1869–1876CrossRefGoogle Scholar
  39. Mian MAR, Saha MC, Hopkins AA, Wang Z (2005) Use of tall fescue EST-SSR markers in phylogenetic analysis of cool-season forage grasses. Genome 48:637–647PubMedCrossRefGoogle Scholar
  40. Obbard DJ, Harris SA, Pannel JR (2006) Simple allelic-phenotype diversity and differentiation statistics for allopolyploids. Heredity 97:296–303PubMedCrossRefGoogle Scholar
  41. Pasakinskiene I, Griffiths CM, Bettany AJE, Paplauskiene V, Humphreys MW (2000) Anchored simple-sequence repeats as primers to generate species specific DNA markers in Lolium and Festuca grasses. Theor Appl Genet 100:384–390CrossRefGoogle Scholar
  42. Pashley CH, Ellis JR, McCauley DE, Burke JM (2006) EST databases as a source for molecular markers: lessons from Helianthus. J Hered 97:381–388PubMedCrossRefGoogle Scholar
  43. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  44. Ramezani E, Marvie M, Knapp HD, Ahmadi H, Joosten H (2008) The late-Holocene vegetation history of the central Caspian (Hyrcanian) forests of northern Iran. Holocene 18:307–321CrossRefGoogle Scholar
  45. Rasmussen M, Karypis G (2004) gCLUTO an interactive clustering, visualization, and analysis system. CSE/UMN technical report no. 04-021.
  46. Saha MC, Mian MAR, Eujayl I, Zwonitzer JC, Wang L, May GD (2004) Tall fescue EST-SSR markers with transferability across several grass species. Theor Appl Genet 109:783–791PubMedCrossRefGoogle Scholar
  47. Saha MC, Cooper JD, Mian MAR, Chekhovskiy K, May GD (2006) Tall fescue genomic SSR markers: development and transferability across multiple grass species. Theor Appl Genet 113:1449–1458PubMedCrossRefGoogle Scholar
  48. Scott KD, Eggler P, Seaton G, Rossetto M, Ablett EM, Lee LS, Henry RJ (2000) Analysis of SSRs derived from grape ESTs. Theor Appl Genet 100:723–726CrossRefGoogle Scholar
  49. Sleper DA (1985) Breeding tall fescue. J Plant Breed Rev 3:313–342Google Scholar
  50. Smouse P, Long J, Sokal R (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632CrossRefGoogle Scholar
  51. Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391PubMedCrossRefGoogle Scholar
  52. Tarasov PE, Volkova VS, Webb T, Guiot J, Andreev AA, Bezusko LG, Bezusko TV, Bykova GV, Dorofeyuk NI, Kvavadze EV, Osipova IM, Panova NK, Sevastyanov DV (2000) Last glacial maximum biomes reconstructed from pollen and plant macrofossil data from northern Eurasia. J Biogeogr 27:609–620CrossRefGoogle Scholar
  53. Thomas HM, Morgan WG, Humphreys MW (2003) Designing grasses with a future—combining the attributes of Lolium and Festuca. Euphytica 133:19–26CrossRefGoogle Scholar
  54. Varshney RK, Graner A, Sorrels ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55PubMedCrossRefGoogle Scholar
  55. Xu WW, Sleper DA (1994) Phylogeny of tall fescue and related species using RFLPs. Theor Appl Genet 88:685–690CrossRefGoogle Scholar
  56. Zhao Y, Karypis G (2005) Data clustering in life sciences. Mol Biotechnol 31:55–80PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Majid Sharifi Tehrani
    • 1
  • Mohsen Mardi
    • 2
  • Jamal Sahebi
    • 3
  • Pilar Catalán
    • 4
  • Antonio Díaz-Pérez
    • 4
    • 5
  1. 1.Department of BiologyUniversity of ShahrekordShahrekordIran
  2. 2.Agricultural Biotechnology Research Institute of Iran (ABRII)KarajIran
  3. 3.Department of BiologyUniversity of IsfahanIsfahanIran
  4. 4.High Polytechnic School of HuescaUniversity of ZaragozaHuescaSpain
  5. 5.Facultad de Agronomía, Instituto de GenéticaUniversidad Central de VenezuelaMaracayVenezuela

Personalised recommendations