Advertisement

New insights into the pollen morphology of the genus Mutisia (Asteraceae, Mutisieae)

  • M. C. Tellería
  • L. Katinas
Original Article

Abstract

The pollen morphology from 67 collections representing 52 species of Mutisia was analyzed by means of light, scanning electron and transmission electron microscopy. Pollen of Mutisia is comparable to that of the more widespread type found in Mutisiinae. The pollen grains of the genus are characterized by the spheroidal-subprolate to prolate shape, large size, tricolporate aperture, with mesoaperture, exine Mutisia type, with sculpturing microechinate to rugulate or microechinate-rugulate. This basic pollen type is very variable in size, endoaperture shape, and exine thickness of the pollen grains. A new type of arrangement of columellae was observed in pollen of Mutisia section Mutisia (e.g., M. stuebelli, M. microphylla, and M. sodiroi). It is suggested that it might have harmomegathic significance. The pollen morphology and polymorphism are discussed with regard to functional mechanisms and possible evolutionary significance.

Keywords

Mutisia LM SEM TEM Pollen polymorphism Chaetanthera South America 

Notes

Acknowledgements

We are grateful to Gloria Daners for valuable comments on the manuscript. We are also grateful to curators of several herbaria for loans of specimens and to Pablo Pérez for helping with LM photographs. Support was provided by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (PICT No. 26289), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina (PIP 5294 and 5604).

References

  1. Blackmore S, Barnes SH (1986) Harmomegathic mechanisms in pollen grains. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 137–149Google Scholar
  2. Borsch T, Wilde V (2000) Pollen variability within species, populations, and individuals, with particular reference to Nelumbo. In: Harley MM, Morton CM, Blackmore S (eds) Pollen and spores: morphology and biology. Royal Botanic Gardens, Kew, pp 285–299Google Scholar
  3. Bronckers F (1963) Variations polliniques dans une série d’autopolyploides artificiels d’Arabidopsis thaliana (L.) Heynh. Pollen et Spores 5:233–238Google Scholar
  4. Cabrera AL (1965) Revisión del género Mutisia (Compositae). Opera Lilloana 13:5–227Google Scholar
  5. Cabrera AL, Willink A (1980) Biogeografía de América Latina. O.E.A. Serie de Biología, Monografía 13, Washington, DCGoogle Scholar
  6. Diez MJ, Mejías JA, Moreno-Socías E (1999) Pollen morphology of Sonchus and related genera, and a general discussion. Plant Syst Evol 214:91–102CrossRefGoogle Scholar
  7. El-Ghazali GEB (1990) An illustrated key to endoaperture morphology. Rev Palaeobot Palynol 63:227–231CrossRefGoogle Scholar
  8. Erdtman G (1960) The acetolysis method. A revised description. Svenk Bot Tidskr 39:561–564Google Scholar
  9. Erdtman G (1969) Handbook of palynology. An introduction to the study of pollen grains and spores. Copenhagen, MunksgaardGoogle Scholar
  10. Fisher TR, Wells JR (1962) Heteromorphic pollen grains in Polymnia. Rhodora 64:336–340Google Scholar
  11. Furness CA, Magallón S, Rudall PJ (2007) Evolution of endoapertures in early-divergent eudicots, with particular reference to pollen morphology in Sabiaceae. Plant Syst Evol 263:77–92CrossRefGoogle Scholar
  12. Halbritter H, Hesse M (2004) Principal modes of infoldings in tricolp(or)ate angiosperm pollen. Grana 43:1–14CrossRefGoogle Scholar
  13. Hansen HV (1991) SEM-studies and general comments on pollen in tribe Mutisieae (Compositae) sensu Cabrera. Nord J Bot 10:607–623CrossRefGoogle Scholar
  14. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum, part I. The herbaria of the world, 8th edn. Bronx, New York Botanical GardenGoogle Scholar
  15. Katinas L, Pruski J, Sancho G, Tellería MC (2008) The subfamily Mutisioideae (Asteraceae). Bot Rev 74:469–716CrossRefGoogle Scholar
  16. King RM, Robinson H (1967) Multiple pollen forms in two species of the genus Stevia (Compositae). Sida 3:165–169Google Scholar
  17. King RM, Robinson H (1968) Studies in the Compositae-Eupatorieae VIII. Observations on the microstructure of Stevia. Sida 3:257–269Google Scholar
  18. Mejías JA, Diez MJ (1993) Palynological and cytological observations in spanish Sonchus (Asteraceae). Grana 32:343–347Google Scholar
  19. Mignot A, Hoss C, Dajoz I, Leuret C, Henry JP, Dreuillaux JM, Heberle-Bors E, Till-Bottraud I (1994) Pollen aperture polymorphism in the angiosperms: importance, possible causes and consequences. Acta Bot Gallica 141:109–122Google Scholar
  20. Nadot S, Ballard Jr, Creach B, Dajoz I (2000) The evolution of pollen heteromorphism in Viola: a phylogenetic approach. Plant Syst Evol 223:155–171CrossRefGoogle Scholar
  21. Parra O, Marticorena C (1972) Granos de polen de plantas chilenas, II. Compositae-Mutisieae. Chile. Gayana Bot 21:1–107Google Scholar
  22. Punt WS, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143:1–81CrossRefGoogle Scholar
  23. Sazima M, Machado ICS (1983) Biologia floral de Mutisia coccinia St. Hil. (Asteraceae). Rev Brasil Bot 6:103–108Google Scholar
  24. Stainier F, Coppens d’ Eeckenbrugge G, Gobbe J (1989) La morphologie pollinique chez des plants autopolyploides de Cichorium intybus L. Pollen Spores 31:187–202Google Scholar
  25. Stix E (1960) Pollenmorphologische Untersuchungen an Compositen. Grana Palyn 2:41–104CrossRefGoogle Scholar
  26. Tellería MC (2008) Taxonomic significance of pollen types in the Guyana Highland-centred genera (Asteraceae, Mutisioideae). Bot J Linnean Soc 156:327–340CrossRefGoogle Scholar
  27. Tellería MC, Forcone A (2000) El polen de las mieles del valle de Río Negro, provincia fitogeográfica del monte (Argentina). Darwiniana 38:273–277Google Scholar
  28. Tellería MC, Katinas L (2004) A comparative palynologic study of Chaetanthera (Asteraceae, Mutisieae) and allied genera. Syst Bot 29:752–773CrossRefGoogle Scholar
  29. Tellería MC, Urtubey E, Katinas L (2003) Proustia and Lophopappus (Asteraceae, Mutisieae): generic and subtribal relationships based on pollen morphology. Rev Palaeobot Palynol 123:237–246CrossRefGoogle Scholar
  30. Torres C (2000) Pollen size evolution: correlation between pollen volume and pistil length in Asteraceae. Sex Plant Reprod 12:365–370CrossRefGoogle Scholar
  31. Vélez MI, Hooghiemstra H, Metcalfe S, Martínez I, Mommersteeg H (2003) Pollen- and diatom based environmental history since the Last Glacial Maximum from the Andean core Fúquene-7, Colombia. J Quat Sci 18:17–30CrossRefGoogle Scholar
  32. Wang J, Cruzan MB (1998) Interspecific mating in the Piriqueta caroliniana (Turneraceae) complex: effects of pollen load, size and composition. Amer J Bot 85:1172–1179CrossRefGoogle Scholar
  33. Wodehouse RP (1929) Pollen grains in the identification and classification of plants IV. The Mutisieae. Amer J Bot 16:297–313CrossRefGoogle Scholar
  34. Zao Z, Skvarla JJ, Jansen RK (2006) Mutisieae (Asteraceae) pollen ultrastructure atlas. Lundellia 9:51–76Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Laboratorio de Sistemática y Biología Evolutiva (LASBE)Museo de La PlataLa PlataArgentina
  2. 2.Laboratorio de ActuopalinologíaMuseo Argentino de Ciencias Naturales Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
  3. 3.División Plantas VascularesMuseo de La PlataLa PlataArgentina

Personalised recommendations