Plant Systematics and Evolution

, Volume 280, Issue 3–4, pp 219–227 | Cite as

Cytotaxonomy of diploid and polyploid Aristolochia (Aristolochiaceae) species based on the distribution of CMA/DAPI bands and 5S and 45S rDNA sites

  • Regina Berjano
  • Fernando Roa
  • Salvador Talavera
  • Marcelo Guerra
Original Article

Abstract

Aristolochia is the largest genus of the family Aristolochiaceae and the only one with large chromosome number variation. A combination of fluorochrome banding and in situ hybridization of 5S and 45S rDNA probes was used to evaluate the structural karyotype variability of representatives of two subgenera: Siphisia, which seems to have a single chromosome number (2n = 32), probably derived from an old polyploidization event, and Aristolochia, including the Old World section Diplolobus and the New World Gymnolobus. Based on chromosome morphology and on the degree of diploidization of rDNA sites, A. serpentaria (Siphisia) was identified as an old hexaploid, whereas A. paucinervis (Diplolobus) seemed to be a recent hexaploid (2n = 34). The karyotypes of the five analyzed species of section Gymnolobus were structurally more stable than those from Diplolobus, which varied considerably in the type of heterochromatin, chromosome number, and morphology. These data indicate that fluorochrome banding and rDNA localization may substantially improve the cytotaxonomical analysis of this genus.

Keywords

Aristolochia Cytotaxonomy Heterochromatin rDNA 

References

  1. Almeida CCS, Carvalho PCL, Guerra M (2007) Karyotype differentiation among Spondias species and the putative hybrid Umbu-cajá (Anacardiaceae). Bot J Linn Soc 155:541–547Google Scholar
  2. Besendorfer V, Samardzija M, Zoldos V, Solic ME, Papes D (2002) Chromosomal organization of ribosomal genes and NOR-associated heterochromatin, and NOR activity in some populations of Allium commutatum Guss. (Alliaceae). Bot J Linn Soc 139:99–108CrossRefGoogle Scholar
  3. Brasileiro-Vidal AC, dos Santos-Serejo JA, Soares Filho WS, Guerra M (2007) A simple chromosomal marker can reliably distinguishes Poncirus from Citrus species. Genetica 129:273–279PubMedCrossRefGoogle Scholar
  4. Cabral JS, Felix LP, Guerra M (2006) Heterochromatin diversity and its co-localization with 5S and 45S rDNA sites in chromosomes of four Maxillaria species (Orchidaceae). Genet Mol Biol 29:659–664CrossRefGoogle Scholar
  5. Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252PubMedCrossRefGoogle Scholar
  6. De Groot H, Wanke S, Neinhuis C (2006) Revision of the genus Aristolochia (Aristolochiaceae) in Africa, Madagascar and adjacent islands. Bot J Linn Soc 151:219–238CrossRefGoogle Scholar
  7. de Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316PubMedCrossRefGoogle Scholar
  8. de Moraes AP, Soares Filho WS, Guerra M (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res 15:115–121PubMedCrossRefGoogle Scholar
  9. Fregonezi JN, Fernandes T, Torezan JMD, Vieira AOS, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on the physical mapping of repetitive DNA. Genet Mol Biol 29:97–104CrossRefGoogle Scholar
  10. González F (1999) Inflorescence morphology and the systematics of Aristolochiaceae. Syst Geogr Plant 68:159–172CrossRefGoogle Scholar
  11. González F, Stevenson DW (2000) Perianth development and systematics of Aristolochia. Flora 195:370–391Google Scholar
  12. Grant V (1982) Periodicities in the chromosome numbers of the angiosperms. Bot Gaz 143:379–389CrossRefGoogle Scholar
  13. Gregory MP (1956) A phyletic rearrangement in the Aristolochiaceae. Am J Bot 43:110–122CrossRefGoogle Scholar
  14. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041Google Scholar
  15. Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350PubMedCrossRefGoogle Scholar
  16. Jaramillo MA, Kramer EM (2004) APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol Dev 6:449–458PubMedCrossRefGoogle Scholar
  17. Kelly LM, González F (2003) Phylogenetic relationships in Aristolochiaceae. Syst Bot 28:236–249Google Scholar
  18. Ma JS (1989) A revision of Aristolochia Linn. from E. & S. Asia. Acta Phytotaxon Sin 27:321–364Google Scholar
  19. Morawetz W (1985) Beiträge zur Karyologie und Systematik der Gattung Thottea (Aristolochiaceae). Bot Jahrb Syst 107:329–342Google Scholar
  20. Moscone EA, Matzke MA, Matzke AJM (1996) The use of combined FISH/GISH in conjunction with DAPI counterstaining to identify chromosomes containing transgene inserts in amphidiploid tobacco. Chromosoma 105:231–236CrossRefGoogle Scholar
  21. Na H, Kondo K (1994) A comparison of chromosome variability in Asarum asperum and A. hexalobum (Aristolochiaceae). Cytol 59:165–173Google Scholar
  22. Nardi E (1984) The genus Aristolochia L. (Aristolochiaceae) in Italy. Webbia 38:221–300Google Scholar
  23. Neinhuis C, Wanke S, Hilu KW, Müller K, Borsch T (2005) Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trnL–trnF sequences. Plant Syst Evol 250:7–26CrossRefGoogle Scholar
  24. Ohi-Toma T, Sugawara T, Murata H, Wanke S, Neinhuis C, Murata J (2006) Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst Bot 31:481–492Google Scholar
  25. Pedrosa-Harand A, de Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933PubMedCrossRefGoogle Scholar
  26. Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci 101:14818–14823PubMedCrossRefGoogle Scholar
  27. Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357PubMedCrossRefGoogle Scholar
  28. Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534CrossRefGoogle Scholar
  29. Schweizer D (1976) Reverse fluorescent chromosome banding with Chromomycin and DAPI. Chromosoma 58:307–324PubMedCrossRefGoogle Scholar
  30. Soltis DE (1984) Karyotypes of species of Asarum and Hexastylis (Aristolochiaceae). Syst Bot 9:490–493CrossRefGoogle Scholar
  31. Stellari GM, Jaramillo MA, Kramer EM (2004) Evolution of the APETALA3 and PISTILLATA lineages of MADS-box-containing genes in the basal angiosperms. Mol Biol Evol 21:506–519PubMedCrossRefGoogle Scholar
  32. Sugawara T, Murata H (1992) Chromosome numbers of eight species of Aristolochia (Aristolochiaceae) from east Asia. Acta Phytotaxon Geobot 43:27–30Google Scholar
  33. Sugawara T, Murata J, Wu S, Ohi T, Nakanishi T, Murata H (2001) A cytological analysis of 24 taxa in Aristolochia subgenera Siphisia and Aristolochia (Aristolochiaceae). Acta Phytotaxon Geobot 52:149–158Google Scholar
  34. Vaio M, Speranza P, Valls JF, Guerra M, Mazzella C (2005) Localization of the 5S and 45S rDNA sites and cpDNA sequence analysis in species of the Quadrifaria group of Paspalum (Poaceae, Paniceae). Ann Bot 96:191–200PubMedCrossRefGoogle Scholar
  35. Wanke S, González F, Neinhuis C (2006) Systematics of pipevines: combining morphological and fast-evolving molecular characters to investigate the relationships within subfamily Aristolochioideae (Aristolochiaceae). Int J Plant Sci 167:1215–1227CrossRefGoogle Scholar
  36. Weiss-Schneeweiss H, Tremetsberger K, Schneeweiss GM, Parker JS, Stuessy TF (2008) Karyotype diversification and evolution in diploid and polyploid South American Hypochaeris (Asteraceae) inferred from rDNA localization and genetic fingerprint data. Ann Bot 101:909–918PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Regina Berjano
    • 1
  • Fernando Roa
    • 2
  • Salvador Talavera
    • 1
  • Marcelo Guerra
    • 2
  1. 1.Department of Plant Biology and EcologyUniversity of SevilleSevilleSpain
  2. 2.Laboratory of Plant Cytogenetics, Department of BotanyFederal University of PernambucoRecifeBrazil

Personalised recommendations