A morphometric study of the Abies religiosa–hickelii–guatemalensis complex (Pinaceae) in Guatemala and Mexico

  • Uffe StrandbyEmail author
  • Knud Ib Christensen
  • Marten Sørensen
Original Article


This morphometric study of the geographic variation in the Abies religiosa–hickelii–guatemalensis complex is based on samples from 15 Guatemalan and 12 Mexican populations, two populations of A. religiosa s.str. and A. hickelii s.str., and herbarium specimens of A. hickelii, A. vejarii and varieties of A. guatemalensis. The multivariate methods employed were principal components analysis, and UPGMA clustering. The multivariate and univariate analyses based on 231 operational taxonomic units imply that although morphological differences exist distinct morphospecies cannot be recognized within the A. religiosa–hickelii–guatemalensis complex. A Mantel’s test reports that taxonomic dissimilarities are significantly related to geographic distance. We suggest, therefore, that A. religiosa, A. hickelii and A. guatemalensis are merged so that A. hickelii is referred to as A. religiosa subsp. hickelii (Flous & Gaussen) U. Strandby, K.I. Chr. & M. Sørensen, comb. et stat. nov. and A. guatemalensis as A. religiosa subsp. mexicana (Martínez) U. Strandby, K.I. Chr. & M. Sørensen, comb. nov. According to our analyses A. vejarii cannot retain its status as a separate taxon as the material studied is nested within A. religiosa subsp. mexicana.


Morphometric study PCA UPGMA Abies guatemalensis A. hickelii A. religiosa A. vejarii 



This project was embarked upon 4 years ago when the project proposal was approved by the Danish Research Council for Development Research (grant No. 91160) with an additional PhD grant by the University of Copenhagen. We gratefully acknowledge the advice and assistance provided by José Pablo Prado Córdova, Juan José Castillo Mont, Gamaliel Alexander Martínez Marroquin, Martin Schiøtz, Karen Munk Rysbjerg, Anne Marie Thonning Skov, Gabriela García Besné, Tulio Lot del Angel, Erika Aguirre-Planter, Eduardo Estrada and the Guatemalan National Seed Centre (BANSEFOR). The curators of A, GH, K, MEXU, MICH, MO and NY kindly provided material for study. We are grateful to the reviewers for their comments which helped to improve the manuscript.


  1. Aguirre-Planter E, Furnier GR, Eguiarte LE (2000) Low levels of genetic variation within and high levels of genetic differentiation among populations of species of Abies from Southern Mexico and Guatemala. Am J Bot 87:362–371PubMedCrossRefGoogle Scholar
  2. Baum DA, Donoghue MJ (1995) Choosing among alternative ‘phylogenetic’ species concepts. Syst Bot 20:560–573CrossRefGoogle Scholar
  3. Bonnet E, Van de Peer Y (2002) zt: A software tool for simple and partial Mantel tests. J Stat Softw 7:1–12Google Scholar
  4. Briggs D, Walters SM (1997) Plant variation and evolution. Cambridge University Press, Cambridge, pp 399–433Google Scholar
  5. Carney D (1998) Implementing the sustainable rural livelihood approach. In: Carney D (ed) Sustainable rural livelihoods—what contribution can we make?. Department for International Development, LondonGoogle Scholar
  6. Christensen KI (1987) Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × sylvestris) (Pinaceae). Nord J Bot 7:383–408CrossRefGoogle Scholar
  7. Christensen KI (1992) Revision of Crataegus sect. Crataegus and nothosect. Crataeguineae (Rosaceae–Maloideae) in the Old World. Syst Bot Monogr 35:1–199Google Scholar
  8. Christensen KI (2005) A morphometric study of the geographic variation in Pinus contorta (Pinaceae). Nord J Bot 23:563–575CrossRefGoogle Scholar
  9. CITES (2008) Convention on International Trade in Endangered Species of Wild Fauna and Flora, Geneva. Available at: (accessed April 2008)
  10. CONABIO (2001) Comisión nacional para el conocimiento y uso de la biodiversidad. Mexico City. (accessed April 2008)
  11. Davis JI (1995) Species concepts and phylogenetic analysis. Syst Bot 20:555–559CrossRefGoogle Scholar
  12. Debreczy Z, Rácz I (1995) New species and varieties of conifers from México. Phytologia 78:217–243Google Scholar
  13. Doyle JJ (1995) The irrelevance of allele tree topographies for species delimitation, and a non-topological alternative. Syst Bot 20:574–588CrossRefGoogle Scholar
  14. Dunn G, Everitt BS (1982) An introduction to mathematical taxonomy. Cambridge University Press, LondonGoogle Scholar
  15. Edwards DGW (2008) Abies. In: USDA FS agriculture handbook 727. Dry Branch, USDA Forest Service, Washington, DC, pp 149–198. Available at: Abies.pdf (accessed May 2008)
  16. Everitt BS, Dunn G (2001) Applied multivariate data analysis. Oxford University Press, New YorkGoogle Scholar
  17. Farjon A (1990) Pinaceae—drawings and descriptions of the genera Abies, Cedrus, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, KönigsteinGoogle Scholar
  18. Fielding AH (2007) Cluster and classification techniques for the biosciences. Cambridge University Press, CambridgeGoogle Scholar
  19. Flous F, Gaussen H (1932) Une nouvelle espéce de sapin Mexicain Abies hickelii. Bull Soc Hist Nat Toulouse 64:24–30Google Scholar
  20. Furnier GR, Eguiarte LE (1997) Niveles y patrones de variación genética del género Abies en México. Informe final del proyecto B138. Universidad Nacional Autónoma de México, Mexico CityGoogle Scholar
  21. Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58:453–467CrossRefGoogle Scholar
  22. Gengler-Nowak K (2002) Phenetic analyses of morphological traits in the Malesherbia humilis complex (Malesherbiaceae). Taxon 51:281–293CrossRefGoogle Scholar
  23. Gibson DJ (2002) Methods in comparative plant population ecology. Oxford University Press, OxfordGoogle Scholar
  24. Givnish TJ (2000) Adaptive radiation and molecular systematics: issues and approaches. In: Schluter D (ed) The ecology of adaptive radiation. Oxford University Press, Oxford, pp 1–54Google Scholar
  25. Givnish TJ (2001) The rise and fall of plant species: a population biologist’s perspective. Am J Bot 88:1928–1934CrossRefGoogle Scholar
  26. Hawley GJ, DeHayes DH (1985) Hybridization among several North American firs. I. Crossability. Can J For Res 15:42–49CrossRefGoogle Scholar
  27. Heywood VH, Iriondo JM (2003) Plant conservation: old problems, new perspectives. Biol Conserv 111:321–335CrossRefGoogle Scholar
  28. Hollingsworth PM (2003) Taxonomic complexity, population genetics and plant conservation in Scotland. Bot J Scotl 55:55–63Google Scholar
  29. Holmgren PK, Holmgren NH, Barnett LC (1990) Index herbariorum. Part I: the herbaria of the World, 8th edn (Regnum Veg. 120). International Association for Plant Taxonomy, New York Botanical Garden, New YorkGoogle Scholar
  30. INAB (1996) Ley Forestal: Decreto Legislativo Número 101–96. Instituto Nacional de Bosques, Guatemala CityGoogle Scholar
  31. INAB (1999) Diagnóstico de las poblaciones naturales de Pinabete (Abies guatemalensis R.) en Guatemala y estrategia para su conservación. Co-ediciones técnicas, documento No. 11. Instituto Nacional de Bosques, Guatemala CityGoogle Scholar
  32. IUCN (2008) Abies guatemalensis—vulnerable. IUCN, Gland. Available at: (accessed March 2008)
  33. Jaramillo-Correa JP, Aguirre-Planter E, Khasa DP, Eguiarte LE, Piñero D, Furnier GR, Bousquet J (2008) Ancestry and divergence of subtropical montane forest isolates: molecular biogeography of the genus Abies (Pinaceae) in southern México and Guatemala. Mol Ecol 17:2476–2490PubMedCrossRefGoogle Scholar
  34. Jeffers JNR (1967) Two case studies in the application of principal component analysis. Appl Stat 16:225–236CrossRefGoogle Scholar
  35. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service (v.3.15). BMC Genet 6:13. Available at:
  36. Jolliffe IT (1986) Principal components analysis. Springer, New YorkGoogle Scholar
  37. Lattin J, Carrol JD, Green P (2003) Analyzing multivariate data. Thomson Learning, TorontoGoogle Scholar
  38. Ledig FT, Bermejo-Velázquez B, Vargas-Hernández J (2000) Genetic differentiation in Mexican conifers. Available at: conference/posters/LedigPosterNAFBW.doc
  39. Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  40. Lester DT (1968) Variation in cone morphology of balsam fir, Abies balsamea. Rhodora 70:83–94Google Scholar
  41. Lienert J, Fischer M, Schneller J, Diemer M (2002) Isozyme variability of the wetland specialist Swertia perennis (Gentianaceae) in relation to habitat size, isolation, and plant fitness. Am J Bot 89:801–811CrossRefGoogle Scholar
  42. Liu TS (1971) A monograph of the genus Abies. Department of Forestry, College of Agriculture, National Taiwan University, TaipeiGoogle Scholar
  43. Luckow M (1995) Species concepts: assumptions, methods and applications. Syst Bot 20(4):589–605CrossRefGoogle Scholar
  44. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  45. Martínez M (1942) Genero Abies. Anales Inst Biol Univ Nac Mexico 13:629–634Google Scholar
  46. Martínez M (1948) Los Abies Mexicanos. Anales Inst Biol Univ Nac Mexico 19:11–104Google Scholar
  47. McDade LA (1995) Species concepts and problems in practice: insight from botanical monographs. Syst Bot 20:606–622CrossRefGoogle Scholar
  48. McGough HN (2006) Legislation: a key user of taxonomy for plant conservation and sustainable use. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 255–265Google Scholar
  49. Milligan GW, Cooper MC (1987) A study of variable standardization. College of Administrative Science Working Paper Series 87–63. Ohio State University, ColumbusGoogle Scholar
  50. Morton A (2001) DMAP for Windows. Version 7.1. Winkfield.
  51. Myers O, Bormann FH (1963) Phenotypic variation in Abies balsamea in response to altitudinal and geographic gradients. Ecology 44:429–436CrossRefGoogle Scholar
  52. Olmstead RG (1995) Species concepts and plesiomorphic species. Syst Bot 20:623–630CrossRefGoogle Scholar
  53. Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350CrossRefGoogle Scholar
  54. Otieno DF, Balkwill K, Paton AJ (2006) A multivariate analysis of morphological variation in the Hemizygia bracteosa complex (Lamiaceae, Ocimeae). Plant Syst Evol 261:19–38CrossRefGoogle Scholar
  55. Panetsos KP (1992) Variation in the position of resin canals in the leaves of Abies species and provenances. Ann Sci For 49:253–260CrossRefGoogle Scholar
  56. Parker WH, Bradfield GE, Maze J, Lin SC (1979) Analysis of variation in leaf and twig characters of Abies lasiocarpa and A. amabilis from north-coastal British Columbia. Can J Bot 57:1354–1366CrossRefGoogle Scholar
  57. Parker WH, Maze J, Bradfield GE (1981) Implications of morphological and anatomical variation in Abies balsamea and A. lasiocarpa (Pinaceae) from Western Canada. Am J Bot 68:843–854CrossRefGoogle Scholar
  58. Rasmussen KK, Strandby Andersen U, Frauenfelder N, Kollmann J (2008) Microsatellite markers for the endangered fir Abies guatemalensis (Pinaceae). Mo Ecol Resour 8(6):1307–1309CrossRefGoogle Scholar
  59. Rehder A (1939) The firs of Mexico and Guatemala. J Arnold Arbor 20:281–287Google Scholar
  60. Rich TCG (2006) The role of the taxonomist in conservation of critical vascular plants. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 212–220Google Scholar
  61. Richard E, Evans D (2006) The need for plant taxonomy in setting priorities for designated areas and conservation management plans: a European perspective. In: Leadlay E, Jury S (eds) Taxonomy and plant conservation. Cambridge University Press, New York, pp 162–176Google Scholar
  62. Rohlf FJ (2008) NTSYSpc—numerical taxonomy and multivariate analysis system, Version 2.20q. Exeter Software, New YorkGoogle Scholar
  63. Rushforth KD (1989) Two new species of Abies (Pinaceae) from western Mexico. Notes R Bot Gard Edinb 46:101–109Google Scholar
  64. Rzedowski RJ (1978) Vegetación de México. Limusa, Mexico CityGoogle Scholar
  65. SAS Institute Inc. (2006) JMP v6.0. SAS Institute Inc., CaryGoogle Scholar
  66. Scaltsoyiannes A, Tsaktsira M, Drouzas D (1999) Allozyme differentiation in the Mediterranean firs (Abies, Pinaceae). A first comparative study with phylogenetic implications. Plant Syst Evol 216:289–307CrossRefGoogle Scholar
  67. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  68. Sokal RR (1979) Testing statistical significance of geographical variation patterns. Syst Zool 28:227–232CrossRefGoogle Scholar
  69. St. Clair JB, Critchfield WB (1988) Hybridization of a Rocky Mountain fir (Abies concolor) and a Mexican fir (Abies religiosa). Paper No. 2255, Forest Research Laboratory, Oregon State university, CorvallisGoogle Scholar
  70. Strandby Andersen U, Prado Córdova JP, Sørensen M, Kollmann J (2006) Conservation and utilisation of Abies guatemalensis Rehder (Pinaceae)—an endangered endemic conifer in Central America. Biodivers Conserv 15:3131–3151CrossRefGoogle Scholar
  71. Thorpe RS (1983) A review of the mumerical methods for recognizing and analyzing racial differentiation. In: Felsenstein J (ed) Numerical taxonomy. Springer, Berlin, pp 404–423Google Scholar
  72. Wendt T, Canela MBF, Morrey-Jones JE, Henriques AB, Rios RI (2000) Recognition of Pitcairnia corcovadensis (Bromeliaceae) at the species level. Syst Bot 25:389–398CrossRefGoogle Scholar
  73. Williams PH, Humphries CJ (1994) Biodiversity, taxonomic relatedness and endemism in conservation. In: Forey PL, Humphries CJ, Vane-Wright RI (eds) Systematics and conservation evaluation. Clarendon Press, London, pp 269–287Google Scholar
  74. Wu H, Hu Z (1997) Comparative anatomy of resin ducts of the Pinaceae. Trees 11:135–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Uffe Strandby
    • 1
    Email author
  • Knud Ib Christensen
    • 2
  • Marten Sørensen
    • 1
  1. 1.Department of Agriculture and EcologyUniversity of CopenhagenFrederiksberg CDenmark
  2. 2.The Botanical Garden and Museum, The Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen KDenmark

Personalised recommendations