Plant Systematics and Evolution

, Volume 279, Issue 1–4, pp 163–189 | Cite as

Systematics and evolution of Carex sects. Spirostachyae and Elatae (Cyperaceae)

  • Marcial EscuderoEmail author
  • Modesto Luceño
Original Article


Carex sect. Spirostachyae comprises 25 species displaying the centre of diversity in Eurasia, while sect. Elatae comprises 22 species displaying the centre of diversity in tropical African mountainous regions. Phylogenetic analysis of the 136 ITS and 108 5′trnK intron sequences of 23 species of sect. Spirostachyae and 20 species of sect. Elatae revealed that neither section is monophyletic. With the exclusion of C. montis-eeka (sect. Spirostachyae) and C. insularis, C. iynx and C. longibrachiata (sect. Elatae), the sects. Spirostachyae and Elatae constitute a monophyletic group of 38 species, 22 of which were previously included in sect. Spirostachyae and 16 of which were in sect. Elatae (considering C. thomasii as C. mannii ssp. thomasii). Two main groups with different edaphic preferences were identified in the core Spirostachyae, in congruence with some morphological features. One group comprises primarily acidophilus species including 11 species of sect. Spirostachyae and 16 species of sect. Elatae. The other group includes 11 basophilic species of sect. Spirostachyae. Incongruence between nuclear and plastid genomes was detected, suggesting hybridization or lineage sorting processes in the evolution of the core Spirostachyae.


Elatae Evolution ITS Phylogeny Spirostachyae Systematics 5′trnK intron 



The authors thank the two anonymous reviewers and V. Valcárcel, P. Vargas, S. Martín-Bravo and M. Buide for critical comments; M. Míguez and F. Fernández for technical support; P. Jiménez, J.M. Marín, V. Valcárcel, J. Fernández, P. Piñero, S. Martín-Bravo, E. Narbona, R. Álvarez and P. Vargas for plant materials; the curators of the herbaria B, BISH, BR, C, CANB, CBG, CONC, E, EA, FHO, GOET, H, HO, HUH, IRAN, K, KMG, L, LD, LISC, M, MA, MB, MO, NBG, NSW, O, OFX, PRE, SIM, U, UPOS, UPS, US, VAL, W, WAG, WU for the material provided; and P.A. Goloboff and M. Arnedo for the help with some analyses. This research was supported by the Spanish Ministry of Science and Technology (Project CGL2005-06017-C02-02/BOS) and the Andalusian Government (P06-RMM-4128).


  1. Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap: a simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266PubMedCrossRefGoogle Scholar
  2. Barros M (1947) Cyperaceae: Scirpoideae, Rhynchosporoideae, Caricoideae. In: Descole HR (ed) Genera et Species Plantarum Argentinarum, vol 4(2). Universidad de Tucumán, Tucumán, pp 259–539Google Scholar
  3. Becherer (1939) Note sur deux Carex. Candollea 8:15Google Scholar
  4. Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. BioTechniques 27:1180–1186PubMedGoogle Scholar
  5. Chater AO (1980) Carex. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 5. Cambridge University Press, Cambridge, pp 290–323Google Scholar
  6. Clarke CB (1902) Cyperaceae. In: Dyer T (ed) Flora of tropical Africa, 8. Reeve, London, pp 266–527Google Scholar
  7. Crins WJ, Ball PW (1988) Sectional limits and phylogenetic considerations in Carex section Ceratocystis (Cyperaceae). Brittonia 40:38–47CrossRefGoogle Scholar
  8. Crins WJ, Reznicek AA (2002) Carex sect. Spirostachyae. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 23 (Cyperaceae). Oxford University Press, New York, pp 521–523Google Scholar
  9. Cronk QCB (1992) Relict floras of Atlantic islands: patterns assessed. Biol J Linn Soc 46:91–103CrossRefGoogle Scholar
  10. Davies EW (1955) The cytogenetics of Carex flava and its allies. Watsonia 3:129–137Google Scholar
  11. Davies EW (1956a) Some new chromosome numbers in the Cyperaceae. Watsonia 3:242–243Google Scholar
  12. Davies EW (1956b) Cytology, evolution and origin of the aneuploid series in the genus Carex. Hereditas 42:349–365Google Scholar
  13. Derieg NJ, Sangaumphai A, Bruederle LP (2008) Genetic diversity and endemism in North American Carex section Ceratocystis (Cyperaceae). Am J Bot 95:1287–1296CrossRefGoogle Scholar
  14. Dietrich J (1964) In documented chromosome numbers of plants. Madroño 17:266–368Google Scholar
  15. Dietrich W (1972) In: Löve A (ed) IOPB chromosome numbers reports, XXXVI. Taxon 21:333–346Google Scholar
  16. Dragon JA, Barrington DS (2009) East vs. west: monophyletic clades within a paraphyletic Carex acuta complex, section Phacocystis (Cyperaceae). In: Naczi RFC, Ford BA (eds) Sedges: uses, diversity, and systematics of the Cyperaceae. Missouri Botanical Garden Press, St. Louis (in press)Google Scholar
  17. Egorova TV (1999) The Sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St Petersburg State Chemical-Pharmaceutical Academy, St Petersburg and Missouri Botanical Garden, St. LouisGoogle Scholar
  18. Escudero M, Valcárcel V, Vargas P, Luceño M (2008a) Evolution in Carex L. sect. Spirostachyae (Cyperaceae): a molecular and cytogenetic approach. Org Divers Evol 7:271–291CrossRefGoogle Scholar
  19. Escudero M, Vargas P, Valcárcel V, Luceño M (2008b) The Strait of Gibraltar: an effective gene flow barrier for the wind-pollinated Carex helodes Link (Cyperaceae), as revealed by DNA sequence, AFLP and cytogenetic variation. Am J Bot 95:745–755CrossRefGoogle Scholar
  20. Escudero M, Valcárcel V, Vargas P, Luceño M (2010) Bipolar disjunctions in Carex: long distance dispersal, vicariance or parallel evolution. Flora (in press)Google Scholar
  21. Favarger C, Galland N, Ph Küpfer (1980) Recherches cytotaxonomiques sur la flore orophile du Maroc. Nat Monspeliensia 29:1–64Google Scholar
  22. Goloboff PA, Farris JS, Nixon K (2003) Tree analysis using new technology version 1.0. Available from the authors and from
  23. Greilhuber J (1995) Chromosomes of the monocotyledons (general aspects). In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematic and evolution. Royal Botanical Gardens Kew, London, pp 379–414Google Scholar
  24. Greuter W, Matthäs U, Risse H (1985) Additions to the flora of Crete, 1973–1983 (1984)–III. Willdenowia 15:23–60Google Scholar
  25. Haines R, Lye KA (1983) The sedges and rushes of East Africa. East African Natural History Society, NairobiGoogle Scholar
  26. Healy AJ, Edgar E (1980) Flora of New Zealand, Volume III. Adventive cyperaceous petalous and spathaceous monocotyledons. Government Printer, WellingtonGoogle Scholar
  27. Heilborn O (1924) Chromosome numbers and dimensions, species formations and phylogeny in genus Carex. Hereditas 5:129–216Google Scholar
  28. Heilborn O (1928) Chromosome studies in Carex. Hereditas 11:182–192CrossRefGoogle Scholar
  29. Hendrichs M, Oberwinkler F, Begerow D, Bauer R (2004) Carex, subgenus Carex (Cyperaceae): a phylogenetic approach using ITS sequences. Plant Syst Evol 246:89–107CrossRefGoogle Scholar
  30. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192Google Scholar
  31. Hipp LA, Reznicek AA, Rothrock PE, Weber JA (2006) Phylogeny and classification of Carex section Ovales (Cyperaceae). Int J Plant Sci 167:1029–1048CrossRefGoogle Scholar
  32. Hooper SS, Napper DM (1972) Cyperaceae. In: Hepper FN (ed) Flora of west tropical Africa, Vol III, Part II, 2nd edn. Crown agents for Oversea Governments and Administrations Millbank, London, pp 278–349Google Scholar
  33. Jermy AC, Simpson DA, Foley MJY, Porter MS (2007) Sedges of the British Isles, BSBI Handbook No1, 3rd edn. Botanical Society of the British Isles, LondonGoogle Scholar
  34. Johnson LA, Soltis DE (1994) matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156CrossRefGoogle Scholar
  35. Kishino H, Miyata T, Hasegawa M (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol 31:151–160CrossRefGoogle Scholar
  36. Kjellqvist E, Löve A (1963) Chromosome numbers of some Carex species from Spain. Bot Not 116:241–248Google Scholar
  37. Kükenthal G (1909) Cyperaceae-Caricoideae. In: Engler A (ed) Das Pflanzenreich IV(20). Engelmann, Leipzig, pp 1–814Google Scholar
  38. Kükenthal G (1921) Cyperaceae in R.E. Fries. Wissenschaftliche Ergebnise der schwedischen Rhodesia-Kongo- Expedition 1911–1912 unter Leitung von Eric Graf von Rosen. Band I, Erg.–Heft. 12: 308–312Google Scholar
  39. Levyns MRB (1950) Cyperaceae. In: Adamson RS, Salter TM (eds) Flora of the Cape Peninsula. Juta, Cape Town, pp 129–132Google Scholar
  40. Löve A (1954) Cytotaxonomical evaluation of corresponding taxa. Vegetatio 5(6):212–224CrossRefGoogle Scholar
  41. Luceño M (1988) Notas caricológicas III. Anales Jard Bot Madrid 45:189–196Google Scholar
  42. Luceño M (1992a) Cytotaxonomic studies in Iberian and Macaronesian species of Carex (Cyperaceae). Willdenowia 22:149–165Google Scholar
  43. Luceño M (1992b) Estudios en la sección Spirostachyae (Drejer) Bailey del género Carex. I. Revalorización de C. helodes Link. Anales Jard Bot Madrid 50:73–81Google Scholar
  44. Luceño M (1993) Études dans la section Spirostachyae (Drejer) Bailey du genre Carex (Cyperaceae). III. Délimitation taxonomique de l’éndémisme nord-africain Carex fissirostris Ball. Candollea 48:195–201Google Scholar
  45. Luceño M, Alves MV (1999) Notas sobre el género Carex (Cyperaceae) en Brasil. Anales Jard Bot Madrid 57:173–174Google Scholar
  46. Luceño M, Castroviejo S (1991) Agmatoploidy in Carex laevigata (Cyperaceae): fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Plant Syst Evol 177:149–159CrossRefGoogle Scholar
  47. Luceño M, Castroviejo S (1993) Cytotaxonomic studies in the sections Spirostachyae (Drejer) Bailey and Ceratocystis Dumort. of the genus Carex L. (Cyperaceae), with special reference to Iberian and North African taxa. Bot J Linn Soc 112:335–350Google Scholar
  48. Luceño M, Guerra M (1996) Numerical variations in species exhibiting holocentric chromosomes: a nomenclatural proposal, III–IV. Caryologia 49:301–309Google Scholar
  49. Luceño M, Marín JM (2002) Carex paulo-vargasii Luceño and J.M. Marín (Cyperaceae), una nueva especie del norte de África. Anales Jard Bot Madrid 59:348–350Google Scholar
  50. Maddison W, Knowles L (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30PubMedCrossRefGoogle Scholar
  51. Mastrogiuseppe J, Rothrock PE, Dibble AC, Reznicek AA (2002) Carex L. sect. Ovales Kunth. In: Flora of North America Editorial Committee (eds) Flora of North America north of Mexico, vol 23. Oxford University Press, New York, pp 331–332Google Scholar
  52. Murphy WJ, Eizirik E, O’brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, De Jong WW, Springer MS (2001) Resolution of the early placental mammal radiation using bayesian phylogenetics. Science 294:2348–2351PubMedCrossRefGoogle Scholar
  53. Nilsson Ö (1985) Carex. In: Davis PH (ed) Flora of Turkey and East Aegean Islands, vol 9. Edinburgh University Press, Edinburgh, pp 73–158Google Scholar
  54. Nylander JCC (2002) MrModeltest V1.0b. Departament of Systematic Zoology, Uppsala University (program distributed by the author)Google Scholar
  55. Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: phylogeography of Manihot esculenta. PNAS 96:5586–5591PubMedCrossRefGoogle Scholar
  56. Ooi K, Endo Y, Yokoyama J, Murakami N (1995) Useful primer designs to amplify DNA fragments of the plastid gene matK from angiosperm plants. J Jap Bot 70:328–331Google Scholar
  57. Queiros M (1980) Números cromosómicos para a flora portuguesa, 38–63. Bol Soc Brot Sér 2 54:47–64Google Scholar
  58. Reznicek AA (1990) Evolution in sedges (Carex, Cyperaceae). Can J Bot 68:1409–1432Google Scholar
  59. Roalson EH (2008) A synopsis of chromosome number variation in the Cyperaceae. Bot Rev 74:209–393CrossRefGoogle Scholar
  60. Roalson EH, Friar EA (2004a) Phylogenetic relationships and biogeographic patterns in North American members of Carex section Acrocystis (Cyperaceae) using nrDNA ITS and ETS sequence data. Plant Syst Evol 243:175–187CrossRefGoogle Scholar
  61. Roalson EH, Friar EA (2004b) Phylogenetic analysis of the nuclear alcohol dehydrogenase (Adh) gene family in Carex section Acrocystis (Cyperaceae) and combined analysis of Adh and nuclear ribosomal ITS and ETS sequences for inferring species relationships. Molec Phylogenet Evol 33:671–686PubMedCrossRefGoogle Scholar
  62. Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocystis. Syst Bot 26:318–341Google Scholar
  63. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  64. Schmid B (1982) Karyology and hybridization in the Carex fava complex in Switzerland. Fed Rep 93:23–59Google Scholar
  65. Starr JR, Ford BA (2009) Cariceae (Cyperaceae) phylogeny: current knowledge and future prospects. Bot. Rev (in press)Google Scholar
  66. Starr JR, Bayer RJ, Ford BA (1999) The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). Am J Bot 86:563–577PubMedCrossRefGoogle Scholar
  67. Starr JR, Harris SA, Simpson DA (2009) Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae. II. The limits of Uncinia Pers. In: Naczi RFC, Ford BA (eds) Sedges: uses, diversity, and systematics of the Cyperaceae. Monographs in systematic botany from the Missouri Botanical Garden, Missouri (in press)Google Scholar
  68. Stoeva MP, Stepankova J (1990) Variation patterns within the Carex flava agg. in Bulgaria and Czekoslovakia. Preslia 62:1–24Google Scholar
  69. Strid A, Franzen R (1981) In: Löve A (ed) Chromosome numbers reports. LXXIII. Taxon 30: 829–961Google Scholar
  70. Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. PNAS 99:16138–16143PubMedCrossRefGoogle Scholar
  71. Swofford DL (2002) PAUP*: phylogenetic analysis using Parsimony, Version 4.07b. Sinauer, SunderlandGoogle Scholar
  72. Tischler G (1935) Die Bedeutung der Polyploidie für die Verbreitung der Angiospermen. Bot Jahr 67:1–36Google Scholar
  73. Waterway MJ, Starr JR (2007) Phylogenetics relationships in tribe Cariceae (Cyperaceae) based on nested analyses of four molecular data sets. Aliso 23:165–192Google Scholar
  74. Wheeler GA (1988) Taxonomic notes on Carex (Cyperaceae) of austral South America. Aliso 12:97–102Google Scholar
  75. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR protocols: a guide to methods and amplifications. Academic, San Diego, pp 315–322Google Scholar
  76. Wolfe AD, Elisens WJ (1995) Evidence of chloroplast capture and pollen-mediated gene flow in Penstemon sect. Peltanthera (Scrophulariaceae). Syst Bot 20:395–412CrossRefGoogle Scholar
  77. Wulff HD (1937a) Kariologischen Untersuchungen an der Halophytenflora Schlewig Holsteins. Jahrb Wiss Bot 84:812–840Google Scholar
  78. Wulff HD (1937b) Chromosomenstudien an der schlewig-holsteinischen Angiospermen-Flora I. Ber Deut Botan Ges 55:262–269Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Pablo de Olavide UniversitySevilleSpain
  2. 2.Department of Molecular Biology and Biochemical EngineeringPablo de Olavide UniversitySevilleSpain

Personalised recommendations