Advertisement

Molecular evidence does not support the current division of Orthotrichum subgenus Gymnoporus

  • Jakub SawickiEmail author
  • Vítězslav Plášek
  • Monika Szczecińska
Original Article

Abstract

Eight Orthotrichum species of subgenus Gymnoporus were compared using the internally transcribed spacer regions-1 and -2 and the chloroplast trnH-psbA region. A phylogenetic analysis did not reflect the current division of this subgenus into sections Affinia and Leiocarpa. The investigated sequences revealed a close relationship between O. striatum, a typical species of section Leiocarpa and O. affine, a typical species of section Affinia. An easily distinguishable group was formed by samples of the dioecious O. lyellii, placed into section Leiocarpa. A large number of fixed differences between O. lyellii and other species of subgenus Gymnoporus raises doubts concerning its position within this subgenus. No marker mutations enabling to differentiate O. fastigiatum from O. affine have been found. In absence of such mutations for O. affine and O. striatum, the status of O. fastigiatum cannot be determined unambiguously.

Keywords

Orthotrichum ITS trnH-psbGenetic diversity Molecular taxonomy 

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19:716–723CrossRefGoogle Scholar
  2. Akiyama H, Hiraoka T (1994) Allozyme variability within and divergence among populations of the liverwort Conocephalum conicum (Marchantiales: Hepaticae) in Japan. J Plant Res 107:307–320CrossRefGoogle Scholar
  3. Appelgren L, Cronberg N (1999) Genetic and morphological variation in the rare epiphytic moss Neckera pennata Hedw. J Bryol 21:97–107Google Scholar
  4. Bączkiewicz A, Sawicki J, Buczkowska K, Polok K, Zieliński R (2008) Application of different DNA markers in studies on cryptic species of Aneura pinguis (Hepaticae, Metzgeriales). Cryptogamie Bryologie 29:3–21Google Scholar
  5. Baldwin BG, Sanderson MJ, Porter JM (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277CrossRefGoogle Scholar
  6. Blom HH (1996) A revision of the Schistidium apocarpum complex in Norway and Sweden. Bryophytorum Bibliotheca, Bd 49. J Cramer, BerlinGoogle Scholar
  7. Boisselier-Dubayle MC, Jubiler MF, Lejeune B, Bischler H (1995) Genetic variability in the three subspecies of Marchantia polymorpha (Hepaticae): izozymes, RFLP and RAPD markers. Taxon 44:363–376CrossRefGoogle Scholar
  8. Boisselier-Dubayle MC, Lambourdiere J, Bischler H (1998) Taxon delimination in Reboulia investigated with morphological, cytological and isozyme markers. Bryologist 101:61–69Google Scholar
  9. Chiang TY, Schaal BA (1999) Phylogeography of the North American Hylocomium splendens based on nrDNA ITS sequences. Mol Ecol 8:1037–1042CrossRefGoogle Scholar
  10. Correns C (1899) Untersuchungen uber die vermehrung der Laubmoose durch Brutorgane und Stecklinge. XXIV, JenaGoogle Scholar
  11. Cronberg N (1996) Isozyme evidence of relationships within Sphagnum sect. Acutifolia (Sphagnaceae, Bryophyta). Pl Syst Evol 203:41–64CrossRefGoogle Scholar
  12. Cronberg N (1998) Population structure and intraspecific differentiation of the peat moss sister species Sphagnum rubellum and S. capillifolium (Sphagnaceae) in northern Europe. Pl Syst Evol 209:139–158CrossRefGoogle Scholar
  13. Cullings K (2000) Reassessment of phylogenetic relationships of some members of the Monotropoideae based on partial 28S ribosomal RNA gene sequencing. Can J Bot 78:1–2CrossRefGoogle Scholar
  14. Daniels RE, Eddy A (1990) Handbook of European Sphagna. Institute of terrestrial ecology, LondonGoogle Scholar
  15. Dewey RM (1989) Genetic variation in the liverwort Riccia dictyospora (Ricciaceae, Hepaticopsida). Syst Bot 14:155–167CrossRefGoogle Scholar
  16. Edgar RC (2004) Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Research 32:1792–1797CrossRefGoogle Scholar
  17. Excoffier, Laval LG, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47–50Google Scholar
  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  19. Fiedorow P, Odrzykoski I, Szweykowska-Kulińska Z (1998) Phylogenetic studies of liverworts using molecular biology techniques. In: Małuszyńska J (ed) Plant cytogenetics. Wydawnictwo Uniwersytetu Řląskiego, Katowice, pp 244–249Google Scholar
  20. Goffinet B, Bayer RJ, Vitt DH (1998) Circumscription and phylogeny of the Orthotrichales (Bryopsida) inferred from rbcL sequence analyses. Am J Bot 85:1324–1337CrossRefGoogle Scholar
  21. Goffinet B, Buck WR, Wall MA (2007) Orthotrichum freyanum (Orthotrichaceae, Bryophyta), a new epiphytic species from Chile. Nova Hedwigia Beiheft 131:1–11Google Scholar
  22. Goryunov DV, Ignatova EA, Ignatov MS, Milyutina IA, Troitsky AV (2007) Support from DNA data for narrow species concept in Schistidium (Grimmiaceae, Musci). J Bryol 29:98–103CrossRefGoogle Scholar
  23. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  24. Hartmann FA, Wilson R, Gradstein SR, Schneider H, Heinrichs J (2006) Testing hypotheses on species delimitations and disjunctions in the liverwort Bryopteris (Jungermanniopsida: Lejeuneaceae). Int J Pl Sci 167:1205–1214CrossRefGoogle Scholar
  25. Hedderson TA (1986) A naturally occurring moss hybrid between Orthotrichum gymnostomum and O. obtusifolium from Newfoundland, Canada. Bryologist 89:165–167CrossRefGoogle Scholar
  26. Hedenäs L (2008) Molecular variation and speciation in Antitricha curtipendula s.l. (Leucodontaceae, Bryophyta) Bot. J. Linnean Soc 156:341–354CrossRefGoogle Scholar
  27. Heinrichs J, Groth H, Lindner M, Feldberg K, Rycroft DS (2004) Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae). Bryologist 107:28–40CrossRefGoogle Scholar
  28. Hey J, Wakeley J (1997) A coalescent estimator of the population recombination rate. Genetics 145:833–846PubMedGoogle Scholar
  29. Holyoak D, Pedersen N (2007) Conflicting molecular and morphological evidence of evolution within the Bryaceae (Bryopsida) and its implications for generic taxonomy. J Bryol 29:111–124CrossRefGoogle Scholar
  30. Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  31. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111–120PubMedCrossRefGoogle Scholar
  32. Kindberg NC (1897) Species of European and North American Bryineae (Mosses). Part 2:153–420Google Scholar
  33. Lewinsky J (1993) A synopsis of the genus Orthotrichum Hedw. (Musci, Orthotrichaceae). Bryobrothera 2:1–59Google Scholar
  34. Lewinsky-Hapaasaari J (1995) Illustrierter Bestimmungsschlüssel zu den europäischen Arten der Gattung Orthotrichum. Meylania 9:3–57Google Scholar
  35. Lewinsky-Haapasaari J, Hedenäs L (1998) A cladistic analysis of the moss genus Orthotrichum. Bryologist 101:519–555Google Scholar
  36. Manos PS (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol Phyl Evol 12:333–349CrossRefGoogle Scholar
  37. Molendo L. (1875) Bayerns Laubmoose. Vorläufige Uebesicht mit besonderer Rücksicht auf Niederbayern. Leipzig, 276 pp Google Scholar
  38. Natcheva R, Cronberg N (2004) What do we know about hybridization among bryophytes in nature? Can J Bot 82:1687–1704CrossRefGoogle Scholar
  39. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  40. Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008) Testing candidate plant barcode regions in the Myristicaceae. Mol Ecol Res 8:480–490CrossRefGoogle Scholar
  41. Nyholm E (1969) Illustrated moss flora of Fennoscandia. CWK Gleerup, Lund, SwedenGoogle Scholar
  42. Philibert MH (1883) Un Orthotrich hybride. Rev Bryol 10:8–13Google Scholar
  43. Piccioli E (1932) Les especes europeennes du genre Orthotrichum. Trav Inst Bot Univ Neuchatel ser I:1–128Google Scholar
  44. Plášek V, Sawicki J, Trávníčková V, Pasečná M (2009) Orthotrichum moravicum/(Orthotrichaceae), a new moss species from the Czech Republic. Bryologist 112(2):329–336CrossRefGoogle Scholar
  45. Polok K (2005) Evolutionary status of close related Lolium L. taxa. 2005. In: Prus-Głowacki W, Pawlaczyk E (eds) Variability and evolution. Adam Mickiewicz University, Poznań, pp 195–207Google Scholar
  46. Polok K, Hołdyński Cz, Sawicki J, Szczecińska M, Zieliński R (2005) Genetic similarity of Polish Sphagnum species on the base of RAPD and ISJ markers. In: Prus-Głowacki W, Pawlaczyk E (eds) Variability and evolution. Adam Mickiewicz University, Poznań, pp 209–216Google Scholar
  47. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  48. Rannala B, Yang Z (2007) Bayesian estimation of species divergence times from multiple loci using multiple calibrations. Syst Biol 56:453–466PubMedCrossRefGoogle Scholar
  49. Resetnik I, Liber Z, Satovic Z, Cigic P, Nikolic T (2007) Molecular phylogeny and systematics of the Lilium carniolicum group (Liliaceae) based on nuclear ITS sequences. Pl Syst Evol 265:45–58CrossRefGoogle Scholar
  50. Ruthe R (1873) Beobachtung zweier durch Bastardbefruchtung entstandener Laubmoosfruchte zwishen Orthotrichum anomalum Hedw. und Orthotrichum stramineum Hornsch. Hedwigia 12:9–14Google Scholar
  51. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 9:945–967Google Scholar
  52. Samuel R, Bachmair A, Jobst J, Ehrendorfer F (1998) ITS sequences from nuclear rDNA suggest unexpected phylogenetic relationships between Euro-Mediterranean, East Asiatic and North American taxa of Quercus (Fagaceae). Pl Syst Evol 211:129–139CrossRefGoogle Scholar
  53. Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136CrossRefGoogle Scholar
  54. Sawicki J, Zieliński R (2008) Phylogenetic relationships between five Sphagnum species of the section Acutifolia based on DNA markers. Cas Slez Muz Opava 57:63–80Google Scholar
  55. Sawicki J, Plášek V, Szczecińska M (2008) Testing candidate trnH-psbA noncoding plant barcode region in the Orthotrichum genus. Scripta Fac Rerum Natur. Univ. Ostraviensis. Environmental Changes and Biological Assessment IV:170–177Google Scholar
  56. Sawicki J, Plášek V, Szczecińska M (2009) Preliminary studies on the phylogeny of the genus Orthotrichum inferred from nuclear ITS sequences. Ann Bot Fenn (in press)Google Scholar
  57. Schimper WP (1876) Synopsis Muscorum Frondosorum, ed. 2. Sumptibus Librariae E. Schweizerbart, StuttgartiaeGoogle Scholar
  58. Shaw AJ (2000) Molecular phylogeography and cryptic speciation in the mosses Mielichhoferia elongata and M. mielichhoferiana (Bryaceae). Mol. Ecol 9:595–608Google Scholar
  59. Shaw AJ, Allen BH (2000) Phylogenetic relationships, morphological incongruence and geographic speciation in the Fontinalaceae (Bryophyta). Mol Phyl Evol 16:225–237CrossRefGoogle Scholar
  60. Shaw AJ, Cox CJ (2005) Variation in “biodiversity value” of peatmoss species in Sphagnum section Acutifolia (Sphagnaceae). Am J Bot 92:1774–1783CrossRefGoogle Scholar
  61. Shaw AJ, Rooks PE (1994) Systematics of Mielichhoferia (Bryaceae, Musci).1. Morphological and genetic analyses of M. elongata and M. mielichhoferiana. Bryologist 97:1–12CrossRefGoogle Scholar
  62. Shaw AJ, Cox CJ, Boles SB (2005) Phylogeny, species delimitation, and recombination in Sphagnum section Acutifolia. Syst Bot 30:16–33CrossRefGoogle Scholar
  63. Smith AJE (1996) The moss flora of Britain and Ireland. Cambridge University Press, CambridgeGoogle Scholar
  64. Snall T, Fogelqvist J, Ribeiro PJJ, Lascoux M (2004) Spatial genetic structure in two congeneric epiphytes with different dispersal strategies analysed by three different methods. Mol Ecol 13:2109–2119PubMedCrossRefGoogle Scholar
  65. Szovenyi P, Hock Z, Urmi E, Schneller JJ (2006) Contrasting phylogeographic patterns in Sphagnum fimbriatum and Sphagnum squarrosum (Bryophyta, Sphagnopsida) in Europe. New Phytologist 172:784–794PubMedCrossRefGoogle Scholar
  66. Szweykowski J, Odrzykoski IJ (1990) Chemical differentiation of Aneura pinguis (L.) Dum. (Hepaticae, Aneuraceae) in Poland and some comments on the application of enzymatic markers in bryology. In: Zinmeister HD, Mues R (eds) Bryophytes: Their Chemistry and Chemical Taxonomy, Oxford Press, Oxford, pp 437–448Google Scholar
  67. Szweykowski J, Odrzykoski IJ, Zieliński R (1981a) Further data on the geographic distribution of two genetically different forms of the liverwort Conocephalum conicum (L.) Dum.: the sympatric and allopatric regions. Bull Acad Pol Sci Ser Sci Biol 28:437–449Google Scholar
  68. Szweykowski J, Zieliński R, Mendelak M (1981b) Variation of peroxidase isoenzymes in Central Eurapean taxa of the liverwort genus Pellia. Bull Acad Pol Sci 29:9–19Google Scholar
  69. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. doi: 10.1093/molbev/msm092
  70. Therrien JP, Crandall-Stotler BJ, Stotler RE (1998) Morphological and genetic variation in Porella platyphylla and P. platyphylloidea and their systematic implication. Bryologist 101:1–19Google Scholar
  71. Vanderpoorten A, Tignon M (2000) Amplified fragments length polymorphism between populations of Amblystegium tenax exposed to contrasting water chemistry. J Bryol 22:257–262Google Scholar
  72. Vanderpoorten A, Shaw AJ, Goffinet B (2001) Testing controversial alignments in Amblystegium and related genera (Bryopsida: Musci). Evidence from nrDNA ITS sequences. Syst Bot 28:470–479Google Scholar
  73. Vanderpoorten A, Goffinet B, Quandt D (2006) Utility of the internal transcribed spacers of the 18S-5.8S-26S nuclear ribosomal DNA in land plant systematics with special emphasis on Bryophytes. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 2b: lower plants. Science Publishers, Enfield, pp 385–407Google Scholar
  74. Venturi G (1887) Orthotrichum. In: Husnot T (ed) Muscologia Gallica 1. T. Husnot, Orne & F. Savy, Paris, pp 154–196Google Scholar
  75. Vitt DH (1968) Sex determination in mosses. Mich Bot 71:195–203Google Scholar
  76. Vitt DH (1971) The infrageneric evolution, phylogeny, and taxonomy of the genus Orthotrichum (Musci) in North America. Nova Hedwigia 21:683–711Google Scholar
  77. Vitt DH (1973) A revision of genus Orthotrichum in North America, north of Mexico. Bryophytorum Bibliotheca 1:1–208Google Scholar
  78. Wyatt R, Odrzykoski IJ (1998) On the origin of the allopolyploid moss Plagiomnium cuspidatum. Bryologist 101:263–271Google Scholar
  79. Wyatt R, Odrzykoski IJ, Koponen T (1997) Mnium orientale sp. nov. from Japan is morphologically and genetically distinct from M. hornum in Europe and North America. Bryologist 100:226–236Google Scholar
  80. Zieliński R (1987) Genetic variation of the liverwort genus Pellia with special reference to central European territory. Rozpr Stud Uniw Szczec 108:1–297Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jakub Sawicki
    • 1
    Email author
  • Vítězslav Plášek
    • 2
  • Monika Szczecińska
    • 1
  1. 1.Department of Botany and Nature ProtectionUniversity of Warmia and Mazury in OlsztynOlsztynPoland
  2. 2.Department of Biology and EcologyUniversity of OstravaOstravaCzech Republic

Personalised recommendations