Plant Systematics and Evolution

, Volume 279, Issue 1–4, pp 93–102 | Cite as

Cytotaxonomical study in Brazilian species of Solanum, Lycianthes and Vassobia (Solanaceae)

  • L. N. A. A. Rego
  • C. R. M. da Silva
  • J. M. D. Torezan
  • M. L. Gaeta
  • Andre Luís Laforga Vanzela
Original Article

Abstract

Solanum comprises about 1,400 species of shrubs, trees and vines. This group is cytogenetically interesting because it possesses karyotypes apparently conserved in chromosome number and shape, but with diversity in the repetitive DNA. The objective of this study is to characterize 16 species of Solanum and two species of closely related genera (Lycianthes australe and Vassobia breviflora) using cytogenetic parameters. All the species presented 2n = 24, confirming previous chromosome counting. Additionally, nonreticulated nuclei, proximal condensation in prophase-metaphase and little variation in the karyotype symmetry were observed. Solanum corymbiflorum exhibited chromosomes approximately three times bigger in relation to the other species. GC-rich heterochromatin was preferentially located at terminal regions and AT-rich blocks always appear in the centromeric regions. The 45S rDNA sites were coincident with C/CMA3+ regions (satellites) and found in just one pair, except in S. corymbiflorum which presented two pairs. FISH with 5S rDNA showed signals in the paracentromeric region of one chromosome pair, except in S. trachytrichium and S. gemellum which showed two hybridization signals. The results point out to different ways of karyotype differentiation in Solanum and closely related genera and bring important issues on the value of the cytogenetical information for taxonomic studies.

Keywords

Chromosomes Cyphomandra Karyotypes Lycianthes rDNA Solanum Vassobia 

References

  1. Acosta MC, Bernardello G, Guerra M, Moscone EA (2005) Karyotype analysis in several South American species of Solanum and Lycianthes rantonnei (Solanaceae). Taxon 54:713–723Google Scholar
  2. Bernardello LM, Anderson GJ (1990) Karyotypic studies in Solanum section Basarthrum (Solanaceae). Amer J Bot 77:420–431CrossRefGoogle Scholar
  3. Bernardello LM, Heiser CB, Piazzano M (1994) Karyotype studies in Solanum section Lasiocarpa (Solanaceae). Amer J Bot 81:95–103CrossRefGoogle Scholar
  4. Bohs L (1989) Solanum allophyllum (Miers) Standl. and the generic delimitation of Cyphomandra and Solanum (Solanaceae). Ann Missour Bot Gard 76:1129–1140CrossRefGoogle Scholar
  5. Bohs L (1994) Cyphomandra (Solanaceae). Flora Neotropica, New York, vol 63, Monograph, pp 1–175Google Scholar
  6. Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44:583–587CrossRefGoogle Scholar
  7. Bohs L (2004) A Chloroplast DNA Phylogeny of Solanum Section Lasiocarpa. Syst Bot 29:177–187CrossRefGoogle Scholar
  8. Bohs L (2005) Major clades in Solanum based on ndhF sequence data. In: Keating RC, Hollowell VC, Croat TB (eds) A festschrift for William G. D’Arcy: the legacy of a taxonomist. Monographs in systematic botany from the Missouri Botanical Garden, vol 104. Missouri Botanical Garden Press, St. Louis, pp 27–49Google Scholar
  9. Bohs L, Olmstead R (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17CrossRefGoogle Scholar
  10. Bohs L, Olmstead R (1999) Solanum phylogeny inferred from chloroplast DNA sequence data. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens, Kew, pp 97–109Google Scholar
  11. Chiarini F, Bernardello G (2006) Karyotype Studies in South American species of Solanum subgen. Leptostemonum (Solanaceae). Plant Biol 8:486–493PubMedCrossRefGoogle Scholar
  12. Child A, Lester RN (2001) Synopsis of the genus Solanum L. and its infrageneric taxa. In: van der Berg RG, Barendse GWN, van der Weerden GM, Mariani C (eds) Solanaceae V: advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 39–52Google Scholar
  13. Cuadrado A, Jouve N (1994) Highly repetitive sequences in B chromosomes of Secale cereale revealed by fluorescence in situ hybridization. Genome 37:709–712PubMedCrossRefGoogle Scholar
  14. D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III––taxonomy, chemistry, evolution. The Royal Botanic Garden and The Linnean Society of London, Kew, pp 75–137Google Scholar
  15. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007CrossRefGoogle Scholar
  16. Fregonezi JN, Fernandes T, Torezan JMD, Vieira AO, Vanzela ALL (2006) Karyotype differentiation of four Cestrum species (Solanaceae) based on physical mapping of repetitive DNA. Gen Mol Biol 29:97–104Google Scholar
  17. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885PubMedCrossRefGoogle Scholar
  18. Gerlach WL, Dyer TA (1980) Sequence organization of the repeated units in the nucleus of wheat which contain 5S-rRNA genes. Nucleic Acids Res 8:4851–4865PubMedCrossRefGoogle Scholar
  19. Guerra MS (1983) O uso do Giemsa em Citogenética Vegetal: comparação o entre a coloração simples e o bandamento. Ciência e Cultura 35:190–193Google Scholar
  20. Guerra M (1986) Reviewing the chromosome nomenclature of Levan et al. Rev Bras Gen 9:741–743Google Scholar
  21. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Gen Mol Biol 23:1029–1041Google Scholar
  22. Heslop-Harrison JS, Schwarzacher T, Anamthewat-Jonsson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–116Google Scholar
  23. Hunziker AT (2001) Genera Solanacearum. The genera of Solanaceae illustrated, arranged according to a new system. Ruggell ARG. GantnerVerlag, Liechtenstein. 500 p, 136 figGoogle Scholar
  24. Kitamura S, Inoue M, Shikazono N, Tanaka A (2001) Relationship among Nicotiana species revealed by the 5S rDNA spacer sequence and fluorescence in situ hybridization. Theor Appl Genet 103:678–686CrossRefGoogle Scholar
  25. Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA (2004) Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Pl Mol Biol 56:439–463CrossRefGoogle Scholar
  26. Lapitan NLV, Ganal MW, Tanksley SD (1991) Organization of the 5S ribosomal RNA genes in the genome of tomato. Genome 34:509–514Google Scholar
  27. Lim KY, Matyasek R, Lichtenstein CP, Leitch AR (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109:245–258PubMedCrossRefGoogle Scholar
  28. Moscone EA (1992) Estudios de cromosomas meióticos en Solanaceae de Argentina. Darwiniana 31:261–297Google Scholar
  29. Moscone EA (1993) Estudios cromosómicos en Capsicum (Solanaceae) II. Analisis cariotipico de C. parvifolium y C. annum var. annum. Kurtiziana 22:9–18Google Scholar
  30. Moscone EA, Lambrou M, Hunziker AT, Ehrendorfer F (1993) Giemsa C-banded karyotypes in Capsicum (Solanaceae). Pl Syst Evol 186:213–229CrossRefGoogle Scholar
  31. Moscone EA, Loidl J, Ehrendorfer F, Hunziker AT (1995) Analysis of active nucleolus organizing regions in Capsicum (Solanaceae) by silver staining. Amer J Bot 82:276–287CrossRefGoogle Scholar
  32. Nakamura R, Kitamura S, Inoue M, Ohmido N, Fukui K (2001) Karyotype analysis of Nicotiana kawakamii Y. Ohashi using DAPI banding and rDNA FISH. Theor Appl Genet 102:810–814CrossRefGoogle Scholar
  33. Nee M (1999) Synopsis of Solanum in the New World. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens, Kew, pp 285–333Google Scholar
  34. Olmstead R, Palmer J (1997) Implications for the phylogeny, classification and biogeography of Solanum from cpDNA restriction-site variation. Syst Bot 22:19–29CrossRefGoogle Scholar
  35. Olmstead R, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. The Royal Botanic Gardens, Kew, pp 111–137Google Scholar
  36. Peterson DG, Stack SM, Price HJ, Johnston JS (1996) DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77–82PubMedCrossRefGoogle Scholar
  37. Pijnaker LP, Ferwerda MA (1984) Giemsa C-banding of potato chromosomes. Can J Gen Cyt 26:415–419Google Scholar
  38. Pringle GJ, Murray BG (1991) Karyotype diversity and nuclear DNA variation in Cyphomandra. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III––taxonomy, chemistry, evolution. The Royal Botanic Garden and The Linnean Society of London, Kew, pp 247–252Google Scholar
  39. Schwarzacher TP, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Pl Syst Evol 134:293–297CrossRefGoogle Scholar
  40. Stebbins GL (1971) Chromosomal evolution in higher plants. Addison-Wesley, Reading, 216 pGoogle Scholar
  41. Urdampilleta JD, Ferrucci MS, Torezan JMD, Vanzela ALL (2006) Karyotype relationships among four South American species of Urvillea (Sapindaceae: Paullinieae). Pl Syst Evol 258:85–95CrossRefGoogle Scholar
  42. Vanzela ALL, Guerra M (2000) Heterochromatin differentiation in holocentric chromosomes of Rhynchospora (Cyperaceae). Gen Mol Biol 23:453–456Google Scholar
  43. Vanzela ALL, Ruas CF, Oliveira MF, Ruas PM (2002) Characterization of diploid, tetraploid and hexaploid Helianthus species by chromosome banding and FISH with 45S rDNA probe. Genetica 114:105–111PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • L. N. A. A. Rego
    • 1
  • C. R. M. da Silva
    • 1
  • J. M. D. Torezan
    • 1
  • M. L. Gaeta
    • 1
  • Andre Luís Laforga Vanzela
    • 1
  1. 1.Laboratório de Biodiversidade e Restauração de Ecossistemas, Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil

Personalised recommendations