Plant Systematics and Evolution

, Volume 279, Issue 1–4, pp 69–86 | Cite as

A phylogenetic analysis of Dipsacaceae based on four DNA regions

Original Article


Authors studied the phylogeny of Dipsacaceae using maximum parsimony and Bayesian analyses on sequence data from chloroplast (trnL intron, trnL–trnF intergenic spacer, psbB–psbH gene complex) and nuclear genomes (ITS1 and ITS2). Both data partitions as well as their combination show that Dipsacaceae is a monophyletic group. Topology in tribe Scabioseae is similar to those of other recent studies, except for the position of Pycnocomon, which is nested in Lomelosia. Pycnocomon, the pollen and epicalyx morphologies of which closely resemble those of Lomelosia, is interpreted as a psammophilous morphotype of Lomelosia, and its nomenclature has been revised accordingly. Exclusion of Pseudoscabiosa, Pterocephalidium, Pterocephalodes (and probably Bassecoia), Succisa, Succisella from Scabioseae is confirmed. Pterocephalodeshookeri is the sister group to the rest of the family. Its remoteness from Pterocephalus has been confirmed on molecular grounds. Lack of evident synapomorphies for various clades is interpreted as a possible consequence of fast adaptative radiation.


Dipsacaceae Internal transcribed spacers (ITS) Phylogeny psbB–psbtrnL intron trnL–trnF intergenic spacer 



This project was partly funded by a MIUR PRIN 2005 grant. We thank Prof. P. Mazzola (University of Palermo, Italy) and Dr. E. Del Guacchio (Bagolifutura, Naples, Italy) for invaluable suggestions on nomenclatural matters; we are grateful to two anonymous scientists who contributed to greatly enhance the paper with their critical remarks.


  1. Aceto S, Caputo P, Cozzolino S, Gaudio L, Moretti A (1999) Phylogeny and evolution of Orchis and allied genera based on ITS DNA variation: morphological gaps and molecular continuity. Mol Phylogenet Evol 13:67–76PubMedCrossRefGoogle Scholar
  2. Backlund AA, Donoghue MJ (1996) Morphology and phylogeny of the order Dipsacales. In: Backlund AA (ed) Phylogeny of the Dipsacales, Doctoral Dissertation. Department of Systematic Botany, Uppsala University, UppsalaGoogle Scholar
  3. Baldwin BG, Sanderson MJ, Porter MJ, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence in angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277CrossRefGoogle Scholar
  4. Bayer RJ, Soltis DE, Soltis PS (1996) Phylogenetic inferences in Antennaria (Asteraceae: Gnaphalieae: Cassiniinae) based on sequences from nuclear ribosomal DNA internal transcribed spacers (ITS). Am J Bot 83:516–527CrossRefGoogle Scholar
  5. Bell CD (2004) Preliminary phylogeny of Valerianaceae (Dipsacales) inferred from nuclear and chloroplast DNA sequence data. Mol Phylogenet Evol 31:340–350PubMedCrossRefGoogle Scholar
  6. Bell CD, Donoghue MJ (2003) Phylogeny of Morinaceae (Dipsacales) based on nuclear and chloroplast DNA sequences. Org Div Evol 3:227–237CrossRefGoogle Scholar
  7. Bell CD, Edwards EJ, Kim ST, Donoghue MJ (2001) Dipsacales phylogeny based on chloroplast DNA sequences. Harvard Pap Bot 6:481–499Google Scholar
  8. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  9. Bukharov AA, Kolosov VL, Zolotarev AS (1988) Nucleotide sequence of rye chloroplast DNA fragment encoding psbB and psbH genes. Nucl Acids Res 16:8737PubMedCrossRefGoogle Scholar
  10. Burtt BL (1999) The importance of some far eastern species of Dipsacaceae in the history of the family. In: Tandon RK, Singh P (eds) Biodiversity, Taxonomy and Ecology: Prof. Dakshini K. M. M. Festschrift. Scientific Publishers, India, p 137Google Scholar
  11. Cannon MJ, Cannon JFM (1984) A revision of the Morinaceae (Magnoliophyta-Dipsacales). Bulletin of the British Museum (Natural History). Botany 12:1–35Google Scholar
  12. Caputo P, Cozzolino S (1994) A cladistic analysis of Dipsacaceae (Dipsacales). Plant Syst Evol 189:41–61CrossRefGoogle Scholar
  13. Caputo P, Cozzolino S, Moretti A (2004) Molecular phylogenetics of Dipsacaceae reveals parallel trends in seed dispersal syndromes. Plant Syst Evol 246:163–175CrossRefGoogle Scholar
  14. Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Tree 13:361–366Google Scholar
  15. De Laet J, Wheeler W (2003) POY version 3.0.11 (Wheeler, Gladstein, and De Laet, 6 May 2003). Command line documentation. Available from: <>Google Scholar
  16. Devesa JA (1984) Pseudoscabiosa, genere nuevo de Dipsacaceae. Lagascalia 12:213–221Google Scholar
  17. Donoghue MJ, Eriksson T, Reeves PA, Olmstead RG (2001) Phylogeny and phylogenetic taxonomy of Dipsacales, with special reference to Sinadoxa and Tetradoxa (Adoxaceae). Harvard Pap Bot 6:459–479Google Scholar
  18. Donoghue MJ, Bell CD, Winkworth RC (2003) The evolution of reproductive characters in Dipsacales. J Plant Sci 164(5 Suppl):S453–S464CrossRefGoogle Scholar
  19. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  20. Ehrendorfer F (1962) Beiträge zur Phylogenie der Gattung Knautia (Dipsacaceae), I. Cytologische Grundlagen und allgemeine Hinweise. Österr Bot Zeit 109:276–343CrossRefGoogle Scholar
  21. Ehrendorfer F (1964a) Cytologie, Taxonomie und Evolution bei Samenpflanzen. In: Turril WB (ed) Vistas in Botany. 4. The MacMillan Company, New York, pp 99–186Google Scholar
  22. Ehrendorfer F (1964b) Über stammesgeschichtliche Differenzierungsmuster bei den Dipsacaceen. Ber Dtsch Bot Gesellsch 77:83–94Google Scholar
  23. Ehrendorfer F (1965) Evolution and karyotype differentiation in a family of flowering plants: Dipsacaceae. Genetics Today (Proc. XI International Congress of Genetics, The Hague, The Netherlands, 1963) 2:399–407Google Scholar
  24. Faith DP, Cranston PS (1991) Could a cladogram this short have arisen by chance alone? On permutation tests for cladistic structure. Cladistics 7:1–28CrossRefGoogle Scholar
  25. Fangan BM, Stedje B, Stabbetorp OE, Jensen ES, Jakobsen KS (1994) A general approach for PCR amplification and sequencing of chloroplast DNA from crude vascular plant and algal tissue. BioTechniques 16:484–494PubMedGoogle Scholar
  26. Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  28. Gielly L, Taberlet P (1995a) Chloroplast DNA polymorphism at the intrageneric level: incidences in resolving plant phylogenies. Compte Rendu de l’Academie des Sciences III, Sciences de la Vie 317:685–692Google Scholar
  29. Gielly L, Taberlet P (1995b) The use of chloroplast DNA resolve plant phylogenesis: non-coding versus rbcL sequences. Mol Biol Evol 11:769–777Google Scholar
  30. Gielly L, Taberlet P (1996) A phylogeny of European gentians inferred from chloroplast trnL (UAA) intron sequences. Bot J Linn Soc 120:57–75Google Scholar
  31. Goloboff P (1999a) Nona. Instruction manual. S. M. de Tucumán, ArgentinaGoogle Scholar
  32. Goloboff P (1999b) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428CrossRefGoogle Scholar
  33. Goloboff P, Farris JS, Nixon K (2003) TNT (tree analysis using new technology), Version 1.0. Published by the authors, Tucumán, ArgentinaGoogle Scholar
  34. Greuter W, Burdet R (1985) Dipsacaceae. In: Greuter W, Raus T (eds) Med-Checklist Notulae 11. Willdenowia 15:71–76Google Scholar
  35. Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  36. Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174PubMedCrossRefGoogle Scholar
  37. Huelsenbeck JP, Ronquist FR (2001) MrBayes: Bayesian inference of phylogeny. Biometrics 17:754–755Google Scholar
  38. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314PubMedCrossRefGoogle Scholar
  39. Judd WS, Sanders RW, Donoghue MJ (1994) Angiosperm family pairs preliminary phylogenetic analyses. Harvard Pap Bot 5:1–51Google Scholar
  40. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20:86–93PubMedCrossRefGoogle Scholar
  41. López Gonzáles G (1987) Pterocephalidium, un nuevo género ibérico de la familia Dipsacaceae. Anales Jard Bot Madrid 43:245–252Google Scholar
  42. Maddison WP, Maddison DR (2008) Mesquite: a modular system for evolutionary analysis. Version 2.5
  43. Mau B, Newton M (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J Comput Graph Stat 6:122–131CrossRefGoogle Scholar
  44. Mau B, Newton M, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55:1–12PubMedCrossRefGoogle Scholar
  45. Mayer V, Ehrendorfer F (1999) Fruit differentiation, palynology, and systematics in the Scabiosa group of genera and Pseudoscabiosa (Dipsacaceae). Plant Syst Evol 216:135–166CrossRefGoogle Scholar
  46. Mayer V, Ehrendorfer F (2000) Fruit differentiation, palynology, and systematics in Pterocephalus Adanson and Pterocephalodes, gen. nov. (Dipsacaceae). Bot J Linn Soc 132:47–78Google Scholar
  47. Müller K (2005) SeqState: primer design and sequence statistics for phylogenetic DNA datasets. Appl Bioinformatics 4:65–69PubMedCrossRefGoogle Scholar
  48. Nixon KC (1999) Winclada (beta) ver. 0.9.9. Published by the author, IthacaGoogle Scholar
  49. Nylander JAA (2004) Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala.
  50. Pyck N, Smets E (2004) On the systematic position of Triplostegia (Dipsacales): a combined molecular and morphological approach. Belg J Bot 137(2):125–139Google Scholar
  51. Rannala B, Yang ZH (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311PubMedCrossRefGoogle Scholar
  52. Robinson M, Gouy M, Gautier C, Mouchiroud D (1998) Sensitivity of the relative-rate test to taxonomic sampling. Mol Biol Evol 15:1091–1098PubMedGoogle Scholar
  53. Robinson-Rechavi M, Huchon D (2000) RRTree: relative-rate tests between groups of sequences on a phylogenetic tree. Bioinformatics 16:296–297PubMedCrossRefGoogle Scholar
  54. Ronquist F, Huelsenbeck JP, van der Mark P (2005) MrBayes 3.1 manual, Draft 5/17/2005. (accessed 18 May 2005)
  55. Sanger F, Niklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  56. Shaffer HB, McKnight ML (1996) The polytypic species revisited: genetic differentiation and molecular phylogenetics of the tiger salamander Ambystoma tigrinum (Amphibia: Caudata) complex. Evolution 50:417–433CrossRefGoogle Scholar
  57. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  58. Suh Y, Thien LB, Reeve HE, Zimmer EA (1993) Molecular evolution and phylogenetic implications of internal sequences of nuclear ribosomal DNA in Winteraceae. Am J Bot 80:1042–1055CrossRefGoogle Scholar
  59. Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32CrossRefGoogle Scholar
  60. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  61. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  62. Van Steenis CGGJ (1948) Dipsacaceae. In: Van Steenis CGGJ (ed) Flora Malesiana 4. Noordhoff-Kolff N. V, Batavia, pp 290–292Google Scholar
  63. Verláque R (1977a) Rapports entre les Valerianaceae, les Morinaceae et les Dipsacaceae. Bull Soc Bot Fr 124:475–482Google Scholar
  64. Verláque R (1977b) Importance du fruit dans la détermination des Dipsacaceae. Bull Soc Bot Fr 124:515–527Google Scholar
  65. Verláque R (1984a) A biosystematic and phylogenetic study of the Dipsacaceae. In: Grant R (ed) Plant biosystematics. Academic Press, Toronto, pp 307–320Google Scholar
  66. Verláque R (1984b) Etude biosystématique et phylogénétique des Dipsacaceae. I.—Délimitation des Dipsacaceae al’ intérieur des Dipsacales, rapports avec les autres familles de l’ordre. Rev. Gén. Bot 91:81–121Google Scholar
  67. Verláque R (1985a) Etude biosystématique et phylogénétique des Dipsacaceae. II—Caractères généraux des Dipsacaceae. Rev Cytol Biol Végét Le Botaniste 8:117–168Google Scholar
  68. Verláque R (1985b) Etude biosystématique et phylogénétique des Dipsaceae. III—Tribus des Knautieae et des Dipsaceae. Rev Cytol Biol Végét Le Botaniste 8:171–243Google Scholar
  69. Verláque R (1986a) Etude biosystématique et phylogénétique des Dipsacaceae. IV—Tribus des Scabioseae (phylum n_ 1, 2, 3). Rev Cytol Biol Végét Le Botaniste 9:5–72Google Scholar
  70. Verláque R (1986b) Etude biosystématique et phylogénétique des Dipsacaceae. V—Tribus des Scabioseae (phylum n_ 4) et conclusion. Rev Cytol Biol Végét Le Botaniste 9:97–176Google Scholar
  71. Weberling F (1975) On the systematics of Nardostachys (Valerianaceae). Taxon 24:443–452CrossRefGoogle Scholar
  72. Weberling F (1978) Monographie der Gattung Nardostachys DC. (Valerianaceae). Bot Jahrb Syst 99:188–221Google Scholar
  73. Wheeler WC (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12:1–9CrossRefGoogle Scholar
  74. Wheeler WC (2003) Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics 19:261–268PubMedCrossRefGoogle Scholar
  75. Wheeler WC, Gatesy J, DeSalle R (1995) Elision: a method for accommodating multiple molecular sequence alignments with alignment-ambiguous sites. Mol Phylogenet Evol 4:1–9PubMedCrossRefGoogle Scholar
  76. Wheeler WC, Gladstein DS, De Laet J, Aaronson L (2003) POY, ver. 3.0.11a. Available from
  77. Zhang WH, Chen ZD, Li JH, Chen HB, Tang YC (2003) Phylogeny of the Dipsacales s.l. based on chloroplast trnL–F and ndhF sequences. Mol Phylogenet Evol 26:176–189PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dipartimento delle Scienze biologiche, sezione di Biologia vegetaleUniversità di Napoli Federico IINaplesItaly
  2. 2.Dipartimento di Biologia strutturale e funzionaleUniversità di Napoli Federico IINaplesItaly
  3. 3.Department of Biological Sciences, B 609 Biological Sciences BuildingUniversity of Alberta EdmontonAlbertaCanada

Personalised recommendations