Plant Systematics and Evolution

, Volume 279, Issue 1–4, pp 29–40 | Cite as

Bulbils contra seeds: reproductive investment in two species of Gagea (Liliaceae)

  • Martin Schnittler
  • Tanja Pfeiffer
  • David Harter
  • Anne Hamann
Original Article


The reproductive biology of the sympatric species Gagea lutea and Gagea spathacea was analyzed morphologically and by resource allocation measurements. Both taxa reproduce vegetatively by bulbils. The hexaploid G. lutea regularly forms seeds, but flowering plants cease to produce bulbils. Seed set was never observed in nonaploid G. spathacea which does not stop vegetative reproduction when flowering. In this species, the pollen contains a high proportion of non-viable grains. Already sterile plants invest more resources (per cent of total nitrogen) into bulbils than G. lutea (10.9 vs. 5.9%). For flowering plants, the respective values are 6.1% (flowers) plus 18.4% (bulbils) for G. spathacea versus 14.8% (flowers only) for G. lutea. G. spathacea lost the ability to reproduce sexually and relies solely on vegetative reproduction. This seems to require the breakdown of the switch mechanism between the bulbil and flower formation (as in G. lutea) and a higher net investment in reproduction, hampering individual growth.


Bulbil Gagea lutea Gagea spathacea Generative reproduction Reproductive biology Resource allocation Vegetative reproduction 



Most of the measurements for morphological data were carried out within several student courses, and we wish to thank all participants, especially C. Brummond, J. Dobbert, N. Formella, H. Kasten, A. Krüger, M. Liermann, L. Lohmann, J. Mohr, L. Niehusen, A. Roschanski, S. Schmidt, and A.-K. Zießnitz. For permission and advice to use the N/C analyzer we are indebted to U. Möbius and S. Zerbe; for use of a fluorescence microscope to S. Stremlau and Ch. Stöhr. Search for localities, but also the organization of field work was supported by S. Starke and A. Klahr (all Institute of Botany and Landscape Ecology). For advices, especially concerning localities, we are grateful to H. Henker (Wismar). We wish to thank the “Staatliches Amt für Umwelt und Natur Ueckermünde” for permission to collect plants and two anonymous reviewers for useful comments and advices.


  1. Archetti M (2004) Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J Evol Biol 17:1084–1097PubMedCrossRefGoogle Scholar
  2. Ashman TL (1994) Reproductive allocation in hermaphrodite and female plants of Sidalcea oregana ssp. spicata (Malvaceae) using four currencies. Am J Bot 81:433–438CrossRefGoogle Scholar
  3. Caparelli K, Peruzzi L, Cesca G (2006) A comparative analysis of embryo-sac development in three closely-related Gagea species (Liliaceae), with some considerations on their reproductive strategies. Plant Biosyst 140:115–122CrossRefGoogle Scholar
  4. Ceplitis A (2001) Genetic and environmental factors affecting reproductive variation in Allium vineale. J Evol Biol 14:721–730CrossRefGoogle Scholar
  5. Ceplitis A, Bengtsson BO (2004) Genetic variation, disequilibrium and natural selection on reproductive traits in Allium vineale. J Evol Biol 17:302–311PubMedCrossRefGoogle Scholar
  6. Gargano D, Peruzzi L, Caparelli K, Cesca G (2007) Preliminary observations on the reproductive strategies in five early-flowering species of Gagea Salisb. (Liliaceae). Bocconea 21:349–358Google Scholar
  7. Geber MA, de Kroon H, Watson MA (1997) Organ preformation in mayapple as a mechanism for historical effects on demography. J Ecol 85:211–223CrossRefGoogle Scholar
  8. Gustafsson A (1946) Apomixis in higher plants. Part I. The mechanisms of apomixis. Lunds Univ Arsskr Adv 2(42):1–67Google Scholar
  9. Haeupler H (1969) Bestimmungsschlüssel der Gagea-Arten im südlichen Niedersachsen im blütenlosen Zustand. Mitt. Florist-soziol Arbeitsgem 14:36–46Google Scholar
  10. Henker H (2005) Goldsterne und Stinsenpflanzen in Mecklenburg-Vorpommern. Botanischer Rundbrief 39:14–37Google Scholar
  11. Hultén E, Fries M (1986) Atlas of North European vascular plants: north of the Tropic of Cancer I–III. Koeltz Scientific Books, Königstein. Accessed 20 Dec 2007
  12. Irmisch Th (1850) Zur Morphologie der monokotylischen Knollen- und Zwiebelgewächse. BerlinGoogle Scholar
  13. Jäger E (1973) Zur Verbreitung und Lebensgeschichte der Wildtulpe (Tulipa sylvestris L.) und Bemerkungen zur Chorologie der Gattung Tulipa L. Hercynia NF 10:429–448Google Scholar
  14. Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, BoulderGoogle Scholar
  15. Kondo T, Miura T, Okubo N, Shimada M, Baskin C, Baskin J (2004) Ecophysiology of deep simple epicotyl morphophysiological dormancy in seeds of Gagea lutea (Liliaceae). Seed Sci Res 14:371–378CrossRefGoogle Scholar
  16. Korneck D, Schnittler M, Vollmer I (1996) Rote Listen und Florenlisten gefährdeter Pflanzen in Deutschland: Florenliste und Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta). Schriftenreihe Vegetationsk. 28:21–187Google Scholar
  17. Levichev IG (1999a) Phytogeographical analysis of the genus Gagea Salisb. (Liliaceae). Komarovia 1:45–47Google Scholar
  18. Levichev IG (1999b) The morphology of Gagea Saliasb. (Liliaceae) I. Subterranean organs. Flora 194:379–392Google Scholar
  19. Levichev IG (2008) Historia Gagearum. Accessed 10 Nov 2008)
  20. Měsíček J, Hrouda L (1977) Chromosome numbers in Czechoslovak species of Gagea (Liliaceae). Folia Geobot Phytotax 9:359–368Google Scholar
  21. Meusel HE, Jäger EJ, Weinert E (1965) Vergleichende Chorologie der zentraleuropäischen Flora, vol 1. Fischer, JenaGoogle Scholar
  22. Nishikawa Y (1998) The function of multiple flowers of a spring ephemeral, Gagea lutea (Liliaceae), with reference to blooming order. Canad J Bot 76:1404–1411CrossRefGoogle Scholar
  23. Patterson TB, Givnish TJ (2002) Phylogeny, concerted convergence, and phylogenetic niche conservatism in the core Liliales: insights from rbcL and ndhF sequence data. Evolution 56:233–252PubMedGoogle Scholar
  24. Peterson A, Peterson J (1999) Genotypic differentiation on an individual level in Gagea villosa (M. Bieb.) Duby, Gagea lutea (L.) Ker-Gawler and Gagea bohemica subsp. saxatilis (Koch) Pascher in Saxony-Anhalt using RAPD markers. J Appl Bot 73:228–233Google Scholar
  25. Peterson A, Hohn H, Koch E, Peterson J (2004) A molecular phylogeny of the genus Gagea (Liliaceae) in Germany inferred from non-coding chloroplast and nuclear DNA sequences. Plant Syst Evol 245:145–162CrossRefGoogle Scholar
  26. Peterson A, Harpke D, Peruzzi L, Tison J-M, John H, Peterson J (2008a) Hybridization drives speciation in Gagea (Liliaceae). Plant Syst. Evol. doi:  10.1007/s00606-008-0102-3 (in press)
  27. Peterson A, Levichev IG, Peterson J (2008b) Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Mol Phylogen Evol 46:446–465CrossRefGoogle Scholar
  28. Peruzzi L (2003) Contribution to the cytotaxonomical knowledge of Gagea Salisb. (Liliaceae) sect. Foliatae A. Terracc. and synthesis of karyological data. Caryologia 56:115–128Google Scholar
  29. Peruzzi L (2008a) Contribution to the cytotaxonomical knowledge of the genus Gagea Salisb. (Liliaceae). III. New karyological data from the central Mediterranean area. Caryologia 61:92–106Google Scholar
  30. Peruzzi L (2008b) Hybridity as a main evolutionary force in the genus Gagea Salisb. (Liliaceae). Plant Biosyst 142:179–184Google Scholar
  31. Peruzzi L, Aquaro G (2005) Contribution to the cytotaxonomical knowledge of Gagea Salisb. (Liliaceae). II. Further karyological studies on Italian populations. Candollea 60:237–253Google Scholar
  32. Peruzzi L, Tison JM (2004) Verso una revisione biosistematica del genere Gagea Salisb. (Liliaceae) in Italia. Un nuovo tipo di approccio. Inform Bot Ital 36:470–475Google Scholar
  33. Peruzzi L, Peterson A, Tison J-M, Peterson J (2008) Phylogenetic relationships of Gagea Salisb. (Liliaceae) in Italy, inferred from molecular and morphological data matrixes. Plant Syst Evol. doi:  10.1007/s00606-008-0081-4 (in press)
  34. Richards AJ (2003) Apomixis in flowering plants: an overview. Philos Trans Ser B 358:1085–1093CrossRefGoogle Scholar
  35. van Raamsdonk LWD (1985) Pollen fertility and seed formation in the Ornithogalum umbellatum/angustifolium complex (Liliaceae/Scilloideae). Plant Syst Evol 149:287–297CrossRefGoogle Scholar
  36. Rothmaler W (founder), Jäger E, Werner K (eds) (2005). Exkursionsflora von Deutschland, vol 4. Gefäßpflanzen: Kritischer Band, 10th edn. Spektrum Akademischer Verlag, MunichGoogle Scholar
  37. Schnittler M, Günther K-F (1999) Central European vascular plants requiring priority conservation measures—an analysis from national Red Lists and distribution maps. Biodivers and Conserv 8:891–925CrossRefGoogle Scholar
  38. Silvertown J (2008) The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int J Plant Sci 169:157–168CrossRefGoogle Scholar
  39. Tomović G, Niketić M (2005) Gagea spathacea (Hayne) Salisb. (Liliaceae)—a new species for the flora of Serbia. Ann Biol Sci Belgrad 57(4):291–294Google Scholar
  40. Uphof JCT (1958–1960) A review of the genus Gagea Salisb. Plant Life 14: 124–132; 15: 151–161; 19: 163–176Google Scholar
  41. Westergård M (1936) A cytological study of Gagea spathacea with a note on the chromosome number and embryo-sac formation in Gagea minima. CR Trav Carlsberg Lab Sér Physiol 21:437–451Google Scholar
  42. Zarrei M, Zarre S (2005) Pollen morphology of the genus Gagea (Liliaceae) in Iran. Flora 200:96–108Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Martin Schnittler
    • 1
  • Tanja Pfeiffer
    • 1
  • David Harter
    • 1
  • Anne Hamann
    • 1
  1. 1.Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt-University GreifswaldGreifswaldGermany

Personalised recommendations