Plant Systematics and Evolution

, Volume 278, Issue 1–2, pp 101–123 | Cite as

Deep divergences in the coffee family and the systematic position of Acranthera

  • Catarina RydinEmail author
  • Kent Kainulainen
  • Sylvain G Razafimandimbison
  • Jenny E E Smedmark
  • Birgitta Bremer
Original Article



Anther-stigma complex Cinchonoideae Coptosapelta Ixoroideae Luculia Rubioideae 



We thank the curators of the herbaria A.A.U., B.R., G.B., K., S., P. and U.P.S. for loan of herbarium material, biomedical technicians Anbar Khodabandeh (Bergius Foundation, Royal Academy of Sciences) and Keyvan Mirbakhsh (Stockholm University, Sweden) for assistance, Jürg Schönenberger (Stockholm University) for suggestions for improvement of SEM investigations, Charlotte Taylor (Missouri Botanical Garden) for sharing unpublished information on Dunnia sinensis, Peter Endress (University of Zürich), Jan-Thomas Johansson, Per-Ola Karis (Stockholm University), Elmar Robbrecht (National Botanic Garden, Belgium) and an anonymous reviewer for valuable suggestions and comments on the text. The study was supported by grants from the Swedish Research Council to C.R. and B.B., and from the Knut and Alice Wallenberg Foundation to B.B.


  1. Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium of information theory. Akademiai Kiado, Budapest, pp 267–281Google Scholar
  2. Alejandro GD, Razafimandimbison SG, Liede-Schumann S (2005) Polyphyly of Mussaenda inferred from ITS and trnT-F data and its implication for generic limits in Mussaendeae (Rubiaceae). Am J Bot 92:544–557CrossRefGoogle Scholar
  3. Andersson L (1996) Circumscription of the tribe Isertieae (Rubiaceae). Opera Bot Belg 7:139–164Google Scholar
  4. Andersson L (2001) Margaritopsis (Rubiaceae, Psychotrieae) is a pantropical genus. Syst Geogr Plants 71:73–85CrossRefGoogle Scholar
  5. Andersson L (2002) Relationships and generic circumscription in the Psychotria complex (Rubiaceae, Psychotrieae). Syst Geogr Plants 72:167–202Google Scholar
  6. Andersson L, Antonelli A (2005) Phylogeny of the tribe Cinchoneae (Rubiaceae), its position in Cinchonoideae, and description of a new genus, Ciliosemina. Taxon 54:17–28Google Scholar
  7. Andersson L, Persson C (1991) Circumscription of the tribe Cinchoneae (Rubiaceae)—a cladistic approach. Plant Syst Evol 178:65–94CrossRefGoogle Scholar
  8. Andersson L, Rova JHE (1999) The rps16 intron and the phylogeny of Rubioideae (Rubiaceae). Plant Syst Evol 214:161–186CrossRefGoogle Scholar
  9. Andreasen K, Bremer B (1996) Phylogeny of the subfamily Ixoroideae (Rubiaceae). In: Robbrecht E, Puff C, Smets E (eds) Second international Rubiaceae conference, proceedings, pp 119–138Google Scholar
  10. Andreasen K, Bremer B (2000) Combined phylogenetic analysis in the Rubiaceae–Ixoroideae: morphology, nuclear and chloroplast DNA data. Am J Bot 87:1731–1748PubMedCrossRefGoogle Scholar
  11. Andreasen K, Baldwin BG, Bremer B (1999) Phylogenetic utility of the nuclear rDNA ITS region in subfamily Ixoroideae (Rubiaceae): comparisons with cpDNA rbcL sequence data. Plant Syst Evol 217:119–135CrossRefGoogle Scholar
  12. APGII (2003) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  13. Arnott GAW (1838) Acranthera Arn. ex Meisn. In: Meisner CDF (ed) Plantarum vascularum Genera, p 115Google Scholar
  14. Backlund A, Bremer K (1998) To be or not to be—principles of classification and monotypic plant families. Taxon 47:391–400CrossRefGoogle Scholar
  15. Backlund M, Oxelman B, Bremer B (2000) Phylogenetic relationships within the Gentianales based on ndhF and rbcL sequences, with particular reference to the Loganiaceae. Am J Bot 87:1029–1043PubMedCrossRefGoogle Scholar
  16. Bremekamp CEB (1947) A monograph of the genus Acranthera Arn. ex Meisn. (Rubiaceae). J Arn Arb 28:261–307Google Scholar
  17. Bremekamp CEB (1950) Schizocolea linderi (Hutch. et Dalz.) Brem. Hooker’s Icon Pl 35:tab. 3482Google Scholar
  18. Bremekamp CEB (1952) The African species of Oldenlandia L. sensu Hiern et K. Schumann. Verh Kon Ned Akad Wetensch, Afd Natuurk, Tweede Sect 48:1–297Google Scholar
  19. Bremekamp CEB (1966) Remarks on the position, the delimitation and the subdivision of the Rubiaceae. Acta Bot Neerl 15:1–33Google Scholar
  20. Bremer B (1996a) Combined and separate analyses of morphological and molecular data in the plant family Rubiaceae. Cladistics 12:21–40CrossRefGoogle Scholar
  21. Bremer B (1996b) Phylogenetic studies within Rubiaceae and relationships to other families based on molecular data. Opera Bot Belg 7:33–50Google Scholar
  22. Bremer B (in press) A historical perspective on molecular phylogenetics of Rubiaceae. Ann Mo Bot GardGoogle Scholar
  23. Bremer B, Jansen RK (1991) Comparative restriction site mapping of chloroplast DNA implies new phylogenetic relationships within Rubiaceae. Am J Bot 78:198–213CrossRefGoogle Scholar
  24. Bremer B, Manen JF (2000) Phylogeny and classification of the subfamily Rubioideae (Rubiaceae). Plant Syst Evol 225:43–72CrossRefGoogle Scholar
  25. Bremer B, Struwe L (1992) Phylogeny of the Rubiaceae and the Loganiaceae: congruence or conflict between morphological and molecular data? Am J Bot 79:1171–1184CrossRefGoogle Scholar
  26. Bremer B, Thulin M (1998) Collapse of Isertieae, re-establishment of Mussaendeae, and a new genus of Sabiceeae (Rubiaceae); phylogenetic relationships based on rbcL data. Plant Syst Evol 211:71–92CrossRefGoogle Scholar
  27. Bremer B, Andreasen K, Olsson D (1995) Subfamilial and tribal relationships in the Rubiaceae based on rbcL sequence data. Ann Mo Bot Gard 82:383–397CrossRefGoogle Scholar
  28. Bremer B, Jansen RK, Oxelman B, Backlund M, Lantz H, Kim K (1999) More characters or more taxa for a robust phylogeny—case study from the coffee family (Rubiaceae). Syst Biol 48:413–435PubMedCrossRefGoogle Scholar
  29. Bremer B, Bremer K, Heidari N, Erixon P, Olmstead RG, Anderberg AA, Källersjö M, Barkhordarian E (2002) Phylogenetics of asterids based on 3 coding and 3 non-coding chloroplast DNA markers and the utility of non-coding DNA at higher taxonomic levels. Mol Phylogenet Evol 24:274–301PubMedCrossRefGoogle Scholar
  30. Burleigh JG, Mathews S (2007a) Assessing among-locus variation in the inference of seed plant phylogeny. Int J Plant Sci 168:111–124CrossRefGoogle Scholar
  31. Burleigh JG, Mathews S (2007b) Assessing systematic error in the inference of seed plant phylogeny. Int J Plant Sci 168:125–135CrossRefGoogle Scholar
  32. Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  33. Chao J-M (1978) Rubiaceae. In: Li HEA (ed) Flora of Taiwan. Epoch Publishing Co., Ltd., TaipeiGoogle Scholar
  34. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500PubMedCrossRefGoogle Scholar
  35. Chiang YC, Ge XJ, Chou CH, Wu WL, Chiang TY (2002) Nucleotide sequence diversity at the methionine synthase locus in endangered Dunnia sinensis (Rubiaceae): an evaluation of the positive selection hypothesis. Mol Biol Evol 19:1367–1375PubMedGoogle Scholar
  36. Church SA (2003) Molecular phylogenetics of Houstonia (Rubiaceae): descending aneuploidy and breeding system evolution in the radiation of the lineage across North America. Mol Phylogenet Evol 27:223–238PubMedCrossRefGoogle Scholar
  37. Church SA, Taylor DR (2005) Speciation and hybridization among Houstonia (Rubiaceae) species: the influence of polyploidy on reticulate evolution. Am J Bot 92:1372–1380CrossRefGoogle Scholar
  38. Darwin SP (1976) The subfamilial, tribal and subtribal nomenclature of the Rubiaceae. Taxon 25:595–610CrossRefGoogle Scholar
  39. de Queiroz A, Gatesy J (2007) The supermatrix approach to systematics. Trends Ecol Evol 22:34–41PubMedCrossRefGoogle Scholar
  40. Delprete PG, Cortes-B R (2004) A phylogenetic study of the tribe Sipaneeae (Rubiaceae, Ixoroideae), using trnL-F and ITS sequence data. Taxon 53:347–356CrossRefGoogle Scholar
  41. Dessein S, Ochoterena H, de Block P, Lens F, Robbrecht E, Schols P, Smets E, Vinckier S, Huysmans S (2005) Palynological characters and their phylogenetic signal in Rubiaceae. Bot Rev 71:354–414CrossRefGoogle Scholar
  42. Ge XJ, Chiang YC, Chou CH, Chiang TY (2002) Nested clade analysis of Dunnia sinensis (Rubiaceae), a monotypic genus from China based on organelle DNA sequences. Conserv Genet 3:351–362CrossRefGoogle Scholar
  43. Gielly L, Taberlet P (1996) A phylogeny of the European gentians inferred from chloroplast trnL (UAA) intron sequences. Bot J Linn Soc 120:57–75Google Scholar
  44. Gould KR, Jansen RK (1999) Taxonomy and phylogeny of a Gulf Coast disjunct group of Spigelia (Loganiaceae sensu lato). Lundellia (Austin, Tex.) 2:1–13Google Scholar
  45. Govaerts R, Andersson L, Robbrecht E et al (2006) World Checklist of Rubiaceae. The Board of Trustees of the Royal Botanic Gardens, Kew.
  46. Huelsenbeck JP, Ronquist FR (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  47. Hutchinson J (1973) Rubiaceae. The families of flowering plants. Clarendon Press, Oxford, pp 476–478Google Scholar
  48. Kainulainen K, Mouly A, Khodabandeh A, Bremer B (in press) Molecular phylogenetic analysis of the tribe Alberteae (Rubiaceae), with description of a new genus, Razafimandimbisonia. TaxonGoogle Scholar
  49. Kårehed J, Bremer B (2007) The systematics of Knoxieae (Rubiaceae)-molecular data and their taxonomic consequences. Taxon 56:1051–1076Google Scholar
  50. Kiehn M (1995) Chromosome survey of the Rubiaceae. Ann Mo Bot Gard 82:398–408CrossRefGoogle Scholar
  51. Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38:7–25CrossRefGoogle Scholar
  52. Korthals PW (1851) Overzigt der Rubiaceën van de Nederlandsch-oostindische kolonien. Ned Kruidk Arch 2:98–114Google Scholar
  53. Lantz H, Bremer B (2004) Phylogeny inferred from morphology and DNA data: characterizing well-supported groups in Vanguerieae (Rubiaceae). Bot J Linn Soc 146:257–283CrossRefGoogle Scholar
  54. Lantz H, Andreasen K, Bremer B (2002) Nuclear rDNA ITS sequence data used to construct the first phylogeny of Vanguerieae (Rubiaceae). Plant Syst Evol 230:173–187CrossRefGoogle Scholar
  55. Lowry R (2008) VassarStats: web site for statistical computation. Vassar College, Poughkeepsie.
  56. Manen JF, Natali A (1995) Comparison of the evolution of ribulose–1, 5-biphosphate carboxylase (rbcL) and atpB-rbcL noncoding spacer sequences in a recent plant group, the tribe Rubieae (Rubiaceae). J Mol Evol 41:920–927PubMedCrossRefGoogle Scholar
  57. Manen JF, Natali A, Ehrendorfer F (1994) Phylogeny of Rubiaceae-Rubieae inferred from the sequence of a cpDNA intergene region. Plant Syst Evol 190:195–211CrossRefGoogle Scholar
  58. Manns U, Bremer B (2008) Intertribal relationships within subfamily Cinchonoideae s.str. (Rubiaceae). IV International Rubiaceae (Gentianales) Conference 44:45Google Scholar
  59. Mathew PM, Philip O (1983) Studies in the pollen morphology of South Indian Rubiaceae. In: Nair PKK (ed) Advances in pollen-spore research. Today and Tomorrow’s Printers, New DelhiGoogle Scholar
  60. Motley TJ, Wurdack KJ, Delprete PG (2005) Molecular systematics of the Catesbaeeae-Chiococceae complex (Rubiaceae): flower and fruit evolution and biogeographic implications. Am J Bot 92:316–329CrossRefGoogle Scholar
  61. Murray BG (1990) Heterostyly and pollen-tube interactions in Luculia gratissima. Ann Bot 65:691–698Google Scholar
  62. Nakamura K, Chung SW, Kokubugata G, Denda T, Yokota M (2006) Phylogenetic systematics of the monotypic genus Hayataella (Rubiaceae) endemic to Taiwan. J Plant Res 119:657–661PubMedCrossRefGoogle Scholar
  63. Natali A, Manen JF, Ehrendorfer F (1995) Phylogeny of the Rubiaceae Rubioideae, in particular the tribe Rubieae - evidence from a noncoding chloroplast DNA-sequence. Ann Mo Bot Gard 82:428–439CrossRefGoogle Scholar
  64. Nepokroeff M, Bremer B, Sytsma KJ (1999) Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Syst Bot 24:5–27CrossRefGoogle Scholar
  65. Novotny V, Basset Y, Miller SE, Weiblen GD, Bremer B, Cizek L, Drozd P (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844PubMedCrossRefGoogle Scholar
  66. Nylander JAA (2004) Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  67. Olmstead RG, Reeves PA (1995) Evidence for the polyphyly of the Scrophulariaceae based on chloroplast rbcL and ndhF sequences. Ann Mo Bot Gard 82:176–193CrossRefGoogle Scholar
  68. Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in the Solanaceae. Syst Biol 43:467–481CrossRefGoogle Scholar
  69. Olmstead RG, Bremer B, Scott KM, Palmer JD (1993) A parsimony analysis of the Asteridae-sensu-lato based on rbcL sequences. Ann Mo Bot Gard 80:700–722CrossRefGoogle Scholar
  70. Oxelman B (1996) RAPD patterns, nrDNA ITS sequences and morphological patterns in Silene section Sedoineae (Caryophyllaceae). Plant Syst Evol 201:93–116CrossRefGoogle Scholar
  71. Oxelman B, Liden M, Berglund D (1997) Chloroplast rps16 intron phylogeny of the tribe Sileneae (Caryophyllaceae). Plant Syst Evol 206:393–410CrossRefGoogle Scholar
  72. Oxelman B, Backlund M, Bremer B (1999) Relationships of the Buddlejaceae s. 1. Investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data. Syst Bot 24:164–182CrossRefGoogle Scholar
  73. Persson C (2000) Phylogeny of Gardenieae (Rubiaceae) based on chloroplast DNA sequences from the rps16 intron and trnL(UAA)-F(GAA) intergenic spacer. N J Bot 20:257–269CrossRefGoogle Scholar
  74. Petit E (1963) Rubiaceae Africaneae X. Colletoecema, genre nouveau de Rubiaceae d’Afrique. Bull Jard Bot État Bruxelles 33:375–380CrossRefGoogle Scholar
  75. Piesschaert F, Andersson L, Jansen S, Dessein S, Robbrecht E, Smets E (2000a) Searching for the taxonomic position of the African genus Colletoecema (Rubiaceae): morphology and anatomy compared to an rps16-intron analysis of the Rubioideae. Can J Bot 78:288–304CrossRefGoogle Scholar
  76. Piesschaert F, Huysmans S, Jaimes I, Robbrecht E, Smets E (2000b) Morphological evidence for an extended tribe—Coccocypseleae (Rubiaceae-Rubioideae). Plant Biol 2:536–546CrossRefGoogle Scholar
  77. Polunin O, Stainton A (1984) Flowers of the Himalaya. Oxford University Press, OxfordGoogle Scholar
  78. Popp M, Oxelman B (2001) Inferring the history of the polyploid Silene aegaea (Caryophyllaceae) using plastid and homoeologous nuclear DNA sequences. Mol Phylogenet Evol 20:474–481PubMedCrossRefGoogle Scholar
  79. Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808PubMedCrossRefGoogle Scholar
  80. Puangsomlee P, Puff C (2001) Chromosome numbers of Thai Rubiaceae. N J Bot 21:165–175CrossRefGoogle Scholar
  81. Puff C, Igersheim A, Buchner R, Rohrhofer U (1995) United stamens of Rubiaceae. Morphology, anatomy; their role in pollination ecology. Ann Mo Bot Gard 82:357–382CrossRefGoogle Scholar
  82. Qiu YL, Li LB, Wang B, Chen ZD, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, Estabrook GF, Hendry TA, Taylor DW, Testa CM, Ambros M, Crandall-Stotler B, Duff RJ, Stech M, Frey W, Quandt D, Davis CC (2006) The deepest divergences in land plants inferred from phylogenetic evidence. Proc Natl Acad Sci USA 103:15511–15516Google Scholar
  83. Rambaut A (1996) Se-Al: Sequence Alignment Editor. Available at
  84. Razafimandimbison SG, Bremer B (2001) Tribal delimitation of Naucleeae (Cinchonoideae, Rubiaceae): inference from molecular and morphological data. Syst Geogr Pl 71:515–538 (publ. 2002)Google Scholar
  85. Razafimandimbison SG, Bremer B (2002) Phylogeny and classification of Naucleeae s.l. (Rubiaceae) inferred from molecular (ITS, rbcL, and trnT-F) and morphological data. Am J Bot 89:1027–1041CrossRefGoogle Scholar
  86. Razafimandimbison SG, Rydin C, Bremer B (2008) Evolution and trends in the Psychotrieae alliance (Rubiaceae)—A rarely reported evolutionary change of many-seeded carpels from one-seeded carpels. Mol Phylogenet Evol 48:207–223PubMedCrossRefGoogle Scholar
  87. Robbrecht E (1988) Tropical woody Rubiaceae. Opera Bot Belg 1:1–271Google Scholar
  88. Robbrecht E, Manen J-F (2006) The major evolutionary lineages of the coffee family (Rubiaceae, angiosperms). Combined analysis (nDNA and cpDNA) to infer the position of Coptosapelta and Luculia, and supertree construction based on rbcL, rps16, trnL-trnF and atpB-rbcL data. A new classification in two subfamilies, Cinchonoideae and Rubioideae. Syst Geogr Plants 76:85–146Google Scholar
  89. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  90. Rova JHE, Delprete PG, Andersson L, Albert VA (2002) A trnL-F cpDNA sequence study of the Condamineeae-Rondeletieae-Sipaneeae complex with implications on the phylogeny of the Rubiaceae. Am J Bot 89:145–159CrossRefGoogle Scholar
  91. Rydin C, Smedmark JEE, Bremer B (2006) Phylogeny, diversity and biogeography of four tribes in Rubioideae. In: Abstract of the third international Rubiaceae conference, p 65Google Scholar
  92. Rydin C, Razafimandimbison SG, Bremer B (2008) Rare and enigmatic genera (Dunnia, Schizocolea, Colletoecema), sisters to species-rich clades: phylogeny and aspects of conservation biology in the coffee family. Mol Phylogenet Evol 48:74–83PubMedCrossRefGoogle Scholar
  93. Schoenenberger J, Anderberg AA, Sytsma KJ (2005) Molecular phylogenetics and patterns of floral evolution in the Ericales. Int J Plant Sci 166:265–288CrossRefGoogle Scholar
  94. Schuettpelz E, Korall P, Pryer KM (2006) Plastid atpA data provide improved support for deep relationships among ferns. Taxon 55:897–906Google Scholar
  95. Schumann K (1891) Rubiaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien 4 (4). Wilhelm Engelmann, LeipzigGoogle Scholar
  96. Schwartz G (1978) Estimating the dimensions of a model. Annu Stat 6:461–464CrossRefGoogle Scholar
  97. Sennblad B, Bremer B (1996) The familial and subfamilial relationships of Apocynaceae and Asclepiadaceae evaluated with rbcL data. Plant Syst Evol 202:153–175CrossRefGoogle Scholar
  98. Smedmark JEE, Rydin C, Razafimandimbison SG, Khan SA, Liede-Schumann S, Bremer B (2008) A phylogeny of Urophylleae (Rubiaceae) based on rps16 intron data. Taxon 57:24–32Google Scholar
  99. Staden R (1996) The Staden sequence analysis package. Mol Biotechnol 5:233–241PubMedCrossRefGoogle Scholar
  100. Struwe L, Thiv M, Kadereit JW, Pepper AS-R, Motley TJ, White PJ, Rova JHE, Potgieter K, Albert VA (1998) Saccifolium (Saccifoliaceae), an endemic of Sierra de la Neblina on the Brazilian-Venezuelan border, is related to temperate-alpine lineages of Gentianaceae. Harv Pap Bot 3:199–214Google Scholar
  101. Sweet R (1826) Luculia gratissima. Br Fl Gard 2: t. 145Google Scholar
  102. Swofford DL (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  103. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109PubMedCrossRefGoogle Scholar
  104. Tavare S (1986) Some probabilistic and statistical problems on the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. American Mathematical Society, Providence, pp 57–86Google Scholar
  105. Taylor CM (1996) Taxonomic revision of Cruckshanksia and Oreopolus (Rubiaceae: Hedyotideae). Ann Mo Bot Gard 83:461–479CrossRefGoogle Scholar
  106. Thulin M, Bremer B (2004) Studies in the tribe Spermacoceae (Rubiaceae-Rubioideae): the circumscriptions of Amphiasma and Pentanopsis and the affinities of Phylohydrax. Plant Syst Evol 247:233–239CrossRefGoogle Scholar
  107. Tutcher WJ (1905) Description of some new species, and notes on other Chinese plants. J Linn Soc Bot 37:58–70CrossRefGoogle Scholar
  108. Valeton T (1923) The genus Coptosapelta Korth. Proc K Akad Wet Amsterdam 26:361–377Google Scholar
  109. Verdcourt B (1958) Remarks on the classification of the Rubiaceae. Bull Jard Bot État Bruxelles 28:209–281CrossRefGoogle Scholar
  110. Verellen J (2002) Palynologische studie en revisie van Coptosapelta (Rubiaceae). Laboratorium voor Systematiek. Katholieke Universiteit, LeuvenGoogle Scholar
  111. Verellen J, Smets E, Huysmans S (2004) The remarkable genus Coptosapelta (Rubiaceae): pollen and orbicule morphology and systematic implications. J Plant Res 117:57–68PubMedCrossRefGoogle Scholar
  112. Verellen J, Dessein S, Razafimandimbison SG, Smets E, Huysmans S (2007) Pollen morphology of the tribe Naucleeae and Hymenodictyeae (Rubiaceae-Cinchonoideae) and its phylogenetic significant. Bot J Linn Soc 153:329–341CrossRefGoogle Scholar
  113. Wortley AH, Rudall PJ, Harris DJ, Scotland RW (2005) How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst Biol 54:697–709PubMedCrossRefGoogle Scholar
  114. Yang Z (1993) Maximum likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401PubMedGoogle Scholar
  115. Yuan YM, Wohlhauser S, Möller M, Chassot P, Mansion G, Grant J, Kupfer P, Klackenberg J (2003) Monophyly and relationships of the tribe Exaceae (Gentianaceae) inferred from nuclear ribosomal and chloroplast DNA sequences. Mol Phylogenet Evol 28:500–517PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Catarina Rydin
    • 1
    • 2
    Email author
  • Kent Kainulainen
    • 2
  • Sylvain G Razafimandimbison
    • 2
  • Jenny E E Smedmark
    • 2
  • Birgitta Bremer
    • 2
  1. 1.Institute of Systematic BotanyUniversity of ZürichZürichSwitzerland
  2. 2.Department of Botany, Bergius Foundation, Royal Swedish Academy of SciencesStockholm UniversityStockholmSweden

Personalised recommendations