Advertisement

Plant Systematics and Evolution

, Volume 278, Issue 1–2, pp 67–85 | Cite as

Analysis of nrDNA polymorphism in closely related diploid sexual, tetraploid sexual and polyploid agamospermous species

  • Lenka Záveská Drábková
  • Jan Kirschner
  • Jan Štěpánek
  • Luděk Záveský
  • Čestmír Vlček
Original Article

Abstract

Nuclear sequences of ITS1-5.8S-ITS2 region of rDNA may be an important source of phylogenetically informative data provided that nrDNA is cloned and the character of sequence variation of clones is properly analyzed. nrDNA of selected Taraxacum sections was studied to show sequence variation differences among diploid sexual, tetraploid sexual and polyploid agamospermous species. We examined nucleotide characteristics, substitution pattern, secondary structure, and the phylogenetic utility of ITS1-5.8S-ITS2 from 301 clones of 32 species representing 11 sections. The most divergent sequences of ITS1&2 differed by 17.1% and in 5.8S only by 3.7%. The ITS1-5.8S-ITS2 characteristics, integrity and also stability of secondary structures confirmed that pseudogenes are not responsible for the above variation. The within-individual polymorphism of clones implies that the concerted evolution of ITS cistron of agamospermous polyploid Taraxacum is remarkably suppressed. Sequences of ITS clones proved to be a useful tool for mapping pathways of complex reticulation (polyploid hybridity) in agamospermous Taraxacum.

Keywords

Taraxacum Dandelion Agamospermy Reticulation nrDNA polymorphism ITS1-5.8S-ITS2 Cloning 

Notes

Acknowledgments

The study was performed in the DNA Laboratory, Institute of Botany ASCR and Laboratory of the Centre for Integrated Genomics and Institute (1M6837805002) of Molecular Genetics ASCR and was supported by grants GACR 206/02/0346 and 206/05/0970. The study was also supported by the institutional Research Plan AV0Z60050516. We thank Šárka Pinkasová for invaluable help during the work in the laboratory, and Věra Matějovičová for help with cultivation and sample preparation. We are particularly indebted to L. Klimeš for important samples collected in Ladakh, NW India. P. Trávníček was so kind as to screen selected herbarium samples for flow-cytometry estimates.

Supplementary material

606_2008_134_MOESM1_ESM.doc (872 kb)
Supplementary material (DOC 872 kb)

References

  1. Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylog Evol 29:417–434CrossRefGoogle Scholar
  2. Baldwin BG (1992) Phylogenetic utility of internal transcribed spacer of nuclear DNA in plants: an example from the Compositae. Mol Phylog Evol 1:3–16CrossRefGoogle Scholar
  3. Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Missouri Bot Gard 82:247–277CrossRefGoogle Scholar
  4. Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism: paralogy and pseudogenes. Mol Phylog Evol 29:435–455CrossRefGoogle Scholar
  5. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1):37–48PubMedGoogle Scholar
  6. Battjes J, Menken SBJ, den Nijs JCM (1992) Clonal diversity in some microspecies of Taraxacum sect. Palustria (Lindb. fil.) Dahlst. from Czechoslovakia. Bot Jb Syst 114:315–328Google Scholar
  7. Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, PortlandGoogle Scholar
  8. Buckler ESI, Holtsford TP (1996) Zea ribosomal repeat evolution and substitutional pattern. Mol Biol Evol 13:623–632PubMedGoogle Scholar
  9. Buckler ESI, Ippolito A, Holtsford TP (1997) The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics 145:821–832PubMedGoogle Scholar
  10. Campbell CS, Wojciechowski MF, Baldwin BG, Alice LA, Donoghue MJ (1997) Persistent nuclear ribosomal DNA sequence polymorphism in the Amelanchier agamic complex (Rosaceae). Mol Phylog Evol 14(1):81–90Google Scholar
  11. Cronn R, Cedroni M, Haselkorn T, Grover C, Wendel JF (2002) PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Gen 104:482–489CrossRefGoogle Scholar
  12. den Nijs JCM, Kirschner J, Štěpánek J, van der Hulst A (1990) Distribution of diploid sexual plants of Taraxacum sect. Ruderalia in east-Central Europe, with special reference to Czechoslovakia. Pl Syst Evol 170:71–84CrossRefGoogle Scholar
  13. den Nijs JCM, Sterk AA (1980) Cytogeography of Taraxacum sectio Taraxacum and sectio Alpestria in France and adjacent parts of Italy and Switzerland, including some taxonomic remarks. Acta Bot Neerl 33(1):1–24Google Scholar
  14. Dobeš C, Mitchell-Olds T, Koch MA (2004) Intraspecific diversification in North American Boechera stricta (=Arabis drummondii), Boechera × divaricarpa, and Boechera holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers—an integrative approach. Amer J Bot 91:2087–2101CrossRefGoogle Scholar
  15. Doll R (1982) Grundriss der Evolution der Gattung Taraxacum Zinn. Feddes Repert 93:426–481Google Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  17. Felsenstein J (1993) PHYLIP (Phylogeny inference package), 3.0. Distributed by the author, SeattleGoogle Scholar
  18. Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci USA 98:3915–3919PubMedCrossRefGoogle Scholar
  19. Fürnkranz D (1969) Eine neue mediterrane Reliktart der Gattung Taraxacum. Österr Bot Z 117:149–156CrossRefGoogle Scholar
  20. Glémin S, Bazin E, Charlesworth D (2006) Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc Roy Soc B 273:3011–3019CrossRefGoogle Scholar
  21. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  22. Harpke D, Peterson A (2006) Non-concerted evolution in Mammillaria (Cactaceae). Mol Phylog Evol 41:579–593CrossRefGoogle Scholar
  23. Jobes DV, Thien B (1997) A conserved motif in the 5.8S ribosomal RNA (rRNA) gene is a useful diagnostic marker for plant internal transcribed spacer (ITS) sequences. Pl Mol Biol Rep 15:326–334CrossRefGoogle Scholar
  24. Kiers AM, Mes THM, Van der Meijden R, Bachmann K (1999) Morphologically defined Cichorium (Asteraceae) species reflect lineages based on chloroplast and nuclear (ITS) DNA data. Syst Bot 24(4):645–659CrossRefGoogle Scholar
  25. Kim K-J, Jansen RK (1994) Phylogenetic implications of rbcL and ITS sequence variation in the Berberidaceae. Syst Bot 21:381–396CrossRefGoogle Scholar
  26. King LM (1993) Origins of genotypic variation in North American dandelions inferred from ribosomal DNA and chloroplast DNA restriction enzyme analysis. Evolution 47(1):136–151CrossRefGoogle Scholar
  27. King LM, Schaal BA (1990) Genotypic variation within asexual lineages of Taraxacum officinale. Proc Natl Acad Sci USA 87:998–1002PubMedCrossRefGoogle Scholar
  28. Kirschner J, Štěpánek J (1993) The genus Taraxacum in the Caucasus. 1, Introduction. 2, The section Porphyrantha. Folia Geobot Phytotax 28:295–320Google Scholar
  29. Kirschner J, Štěpánek J (1996) Modes of speciation and evolution of the sections in Taraxacum. Folia Geobot Phytotax 31:415–426CrossRefGoogle Scholar
  30. Kirschner J, Štěpánek J (1998) A monograph of Taraxacum sect. Palustria. Institute of Botany, Průhonice. 281Google Scholar
  31. Kirschner J, Štěpánek J (1998b) A revision of Taraxacum sect. Piesis (Compositae). Folia Geobot 33:391–414CrossRefGoogle Scholar
  32. Kirschner J, Štěpánek J (2004) New sections in Taraxacum. Folia Geobot 39:259–274CrossRefGoogle Scholar
  33. Kirschner J, Štěpánek J (2005) Dandelions in Central Asia: Taraxacum sect. Suavia. Preslia 77:263–276Google Scholar
  34. Kirschner J, Štěpánek J, Tichý M, Krahulcová A, Kirschnerová L, Pellar L (1994) Variation in Taraxacum bessarabicum and allied taxa of the section Piesis (Compositae): allozyme diversity, karyotypes and breeding behaviour. Folia Geobot Phytotax 29:61–83CrossRefGoogle Scholar
  35. Kirschner J, Štěpánek J, Mes THM, den Nijs JCM, Oosterveld P, Štorchová H, Kuperus P (2003) Principal features of the cpDNA evolution in Taraxacum (Asteraceae, Lactuceae): a conflict with taxonomy. Pl Syst Evol 239:231–255CrossRefGoogle Scholar
  36. Kirschner J, Štěpánek J, Klimeš L (2006) Dandelions in Central Asia: a taxonomic revision of Taraxacum section Leucantha. Preslia 78:27–65Google Scholar
  37. Koch MA, Dobeš C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20:338–350PubMedCrossRefGoogle Scholar
  38. Li W (1997) Molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  39. Liston A, Robinson WA, Oliphant JM, Alvarez-Buylla E (1996) Length variation in the nuclear ribosomal DNA internal transcribed spacer region of non-flowering seed plants. Syst Bot 21:109–120CrossRefGoogle Scholar
  40. Liu JS, Schardl CL (1994) A conserved sequence in internal transcribed spacer–1 of plant nuclear ribosomal–RNA genes. Pl Mol Biol 26(2):775–778CrossRefGoogle Scholar
  41. Logacheva MD, Valiejo-Roman CM, Pimenov MG (2008) ITS phylogeny of West Asian Heracleum species and related taxa of Umbelliferae-Tordylieae W.D.J. Koch, with notes on evolution of their psbA-trnH sequences. Pl Syst Evol 270:139–157CrossRefGoogle Scholar
  42. Małecka J (1964) Multinucleate pollen grains in Taraxacum serotinum. Acta Biol Cracov 7:108–116Google Scholar
  43. Manen J-F (2004) Are both sympatric species Ilex perado and Ilex canariensis secretly hybridizing? Indication from nuclear markers collected in Tenerife. BMC Evol. Biol. 4, Art. No. 46Google Scholar
  44. Menken SBJ, Morita T (1989) Uniclonal population structure in the pentaploid obligate agamosperm Taraxacum albidum Dahlst. Pl Species Biol 4:29–36CrossRefGoogle Scholar
  45. Mes THM, Kuperus P, Kirschner J et al (2002) Detection of genetically divergent clone mates in apomictic dandelions. Mol Ecol 11(2):253–265PubMedCrossRefGoogle Scholar
  46. Nieto Feliner G, Larena BG, Aguilar JF (2004) Fine-scale geographic structure, intra-individual polymorphism and recombination in nuclear ribosomal internal transcribed spacers in Armeria (Plumbaginaceae). Ann Bot 93:189–200PubMedCrossRefGoogle Scholar
  47. Nixon KC (1999) The parsimony ratchet, a new method for rapid phylogenetic analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  48. Nixon KC (2002) WinClada ver. 1.00.08. Published by the author, IthacaGoogle Scholar
  49. Rauschler JT, Doyle JJ, Brown HD (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166:987–998CrossRefGoogle Scholar
  50. Razafimandimbison SG, Kellog EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Syst. Biol. 53:177–192PubMedCrossRefGoogle Scholar
  51. Richards AJ (1969) Chromosome numbers in Taraxacum. Taxon 18:560–562Google Scholar
  52. Rieseberg LH, Beckstrom-Sternberg S, Doan K (1990) Helianthus annus ssp. texanus has chloroplast DNA and nuclear ribosomal RNA genes of Helianthus debilis ssp. cucumerifolius. Proc Natl Acad Sci USA 87:593–597PubMedCrossRefGoogle Scholar
  53. Roalson EH, Columbus JT, Friar EA (2001) Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (nrDNA) and trnT-L-F (cpDNA) region sequences: assessment of suprageneric and sectional relationships in Carex with emphasis on section Acrocystic. Syst Bot 26(2):318–341Google Scholar
  54. Rooney AP, Ward TJ (2005) Evolution of large ribosomal RNA multigene family in filamentous fungi: birth and death of concerted evolution paradigm. Proc Natl Acad Sci USA 102(14):5084–5089PubMedCrossRefGoogle Scholar
  55. Rosselló JA, Lázaro A, Cosín R, Molins A (2007) A phylogenetic split in Buxus balearica (Buxaceae) as evidenced by nuclear ribosomal markers: when ITS paralogs are welcome. J Mol Evol 64:143–157PubMedCrossRefGoogle Scholar
  56. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  57. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Laboratory Press, New YorkGoogle Scholar
  58. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817PubMedCrossRefGoogle Scholar
  59. Stace CA (2005) Plant taxonomy and biosystematics—does DNA provide all the answers? Taxon 54(4):999–1007Google Scholar
  60. van Dijk PJ, Bakx-Schotman JMT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum officinale s.l.) is controlled by a sex specific dominant locus. Genetics 166(1):483–492PubMedCrossRefGoogle Scholar
  61. van den Hulst RGM, Mes THM, Nijs JCM, Bachmann K (2000) Amplified fragment length polymorphism (AFLP) markers reveal that population structure of triploid dandelions (Taraxacum officinale) exhibits both clonality and recombination. Mol Evol 9(1):1–8CrossRefGoogle Scholar
  62. Van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamospermous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55:223–228CrossRefGoogle Scholar
  63. Verduijn MH, van Dijk P, Van Damme JMM (2004) The role of tetraploids in the sexual–asexual cycle in dandelions (Taraxacum). Heredity 93:390–398PubMedCrossRefGoogle Scholar
  64. Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284PubMedCrossRefGoogle Scholar
  65. White TJ, Bruns TD, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR protocols: a guide to methods and amplifications. Academic Press, Inc, San Diego, pp 315–322Google Scholar
  66. Wittzell H (1999) Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions. Mol Ecol 8:2023–2035PubMedCrossRefGoogle Scholar
  67. Wei X-X, Wang X-Q, Hong D-Y (2003) Marked intragenomic heterogeneity and geographical differentiation of nrDNA ITS in Larix potaninii (Pinaceae). J Mol Evol 57:623–635PubMedCrossRefGoogle Scholar
  68. Záveský L, Jarolímová V, Štěpánek J (2005) Nuclear DNA content variation within the genus Taraxacum (Asteraceae). Folia Geobot 40:91–104CrossRefGoogle Scholar
  69. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Lenka Záveská Drábková
    • 1
    • 2
  • Jan Kirschner
    • 1
  • Jan Štěpánek
    • 1
    • 3
  • Luděk Záveský
    • 4
  • Čestmír Vlček
    • 2
  1. 1.Institute of BotanyAcademy of SciencesPrůhoniceCzech Republic
  2. 2.Center for Applied Genomics and Institute of Molecular Genetics, Academy of SciencesPrague 4Czech Republic
  3. 3.Department of BotanyHerbarium Universitatis Carolinae (PRC)Praha 2Czech Republic
  4. 4.Spofa a.s.Praha 9Czech Republic

Personalised recommendations