Plant Systematics and Evolution

, Volume 277, Issue 3–4, pp 143–151 | Cite as

Homoploid hybridization in the origin and evolution of wild diploid potato species

  • Ricardo W. Masuelli
  • Elsa L. Camadro
  • Luis E. Erazzú
  • María C. Bedogni
  • Carlos F. Marfil
Review

Abstract

The potatoes, Solanum L. section Petota Dumortier, are a group of species that possess a very broad range of biological diversity, and a wide geographical distribution in the Americas. These species constitute euploid series with somatic chromosome numbers ranging from 2n = 2x = 24 to 2n = 6x = 72. Although special attention has been given to the origin of polyploid potato species, principally the cultivated forms, that are major food crops, and hybridization has been accepted as an important evolutionary force in the section, the mechanisms involved in the origin and evolution of the diploid species have not been elucidated. Herein, we propose that homoploid hybridization is the main mechanism involved in the origin and evolution of the diploid potato species, and discuss the evidences that support our proposal.

Keywords

Wild potato species Hybridization Introgression Speciation 

References

  1. Anderson E (1949) Introgressive hybridization. Wiley Press, New YorkGoogle Scholar
  2. Bitter G. 1912–1913. Solana nova vel minus cogita. Feddes Repert. Spec. Nivarum Regni Veg. 10:529–565; 11:1–8, 202–237, 241–260, 349–394, 431–473, 481–491, 561–566; 12:1–10, 49–90, 136–262, 433–467, 542–555; 13:88–103, 169–173Google Scholar
  3. Bedogni MC, Camadro EL (2007) Variabilidad a nivel molecular mediante microsatélites en introducciones de la especie silvestre de papa Solanum kurtzianum Bitt. et Wittm. Actas XXXVI Congreso Argentino de Genética, Pergamino, Buenos Aires. 23 al 26 de Septiembre de 2007Google Scholar
  4. Brücher HE (1989) Refutation of recent creations of microspecies and hybrid taxa in Argentinian Solanum (sect. Petota). Phytopatologia 67:220–226Google Scholar
  5. Buerkle CA, Morris RJ, Asmussen MA, Rieseberg LH (2000) The likelihood of homoploid hybrid speciation. Heredity 84:441–451PubMedCrossRefGoogle Scholar
  6. Bukasov SM (1930) The cultivated plants of Mexico, Guatemala and Colombia. Bull Appl Bot Genet Pl Bred (Leningrad), Suppl. No. 47, Chap. 14:191–226Google Scholar
  7. Bukasov SM (1933) The potatoes of South America and their breeding possibilities. Lenin Acad Agr Sci, USSR Genet and Pl Breed Leningrad), p 192, illus. (In Russian, English summary)Google Scholar
  8. Camadro EL (1981) Mode of origin and evolution of wild polyploid Solanums and the development of internal barriers to hybridization. Dissertation, University of Wisconsin, USAGoogle Scholar
  9. Camadro EL, Peloquin SJ (1981) Cross-incompatibility between two sympatric polyploid Solanum species. Theor Appl Genet 60:65–70CrossRefGoogle Scholar
  10. Camadro EL, Carputo D, Peloquin SJ (2004) Substitute for genome differentiation in tuber-bearing Solanum: interspecific pollen–pistil incompatibility, nuclear-cytoplasmic male sterility and endosperm. Theor Appl Genet 109:1369–1376PubMedCrossRefGoogle Scholar
  11. Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genetics 163:287–294PubMedGoogle Scholar
  12. Chavez R, Brown CR, Iwanaga M (1988) Transfer of resistance to PLRV titer buildup from Solanum etuberosum to a tuber-bearing Solanum gene pool. Theor Appl Genet 76:129–135CrossRefGoogle Scholar
  13. Cheng BF, Séguin-Swartz G, Somers DJ (2002) Cytogenetic and molecular characterization of intergeneric hybrids between Brassica napus and Orychophragmus violaceus. Genome 45:110–115PubMedCrossRefGoogle Scholar
  14. Clausen AM, Spooner DM (1998) Molecular support for the hybrid origin of the wild potato species Solanum × rechei. Crop Sci 38:858–865Google Scholar
  15. Clausen AM, Colavita M, Butzonich I, Carranza AV (2005) A potato collecting expedition in the province of Jujuy, Argentina and disease indexing of virus and fungus pathogens in Andean cultivars. Genet Res Crop Evol 52:1099–1109CrossRefGoogle Scholar
  16. Clausen AM, Ispizúa VN, Camadro EL, Larrosa F (2006) Morphological and genetic variability in wild potato species from northwest Argentina. VI international Solanaceae conference, 90 annual meeting of the potato association of America and Solanaceae genomic workshop, Madison, Wisconsin, USAGoogle Scholar
  17. Correll DS (1962) The potato and its wild relatives. Texas Research Foundation, RennerGoogle Scholar
  18. del Rio AH, Bamberg JB (2002) Lack of association between genetic and geographic origin characteristics for the wild potato Solanum sucrense Hawkes. Am J Potato Res 79:335–338CrossRefGoogle Scholar
  19. del Río AH, Bamberg JB, Huaman Z, Salas A, Vega SB (2001) Association of ecogeographical variables and RAPD marker variation in wild potato populations of the USA. Crop Sci 41:870–877CrossRefGoogle Scholar
  20. den Nijs TPM, Peloquin SJ (1977) 2n gametes in potato species and their function in sexual polyploidization. Euphytica 26:585–600CrossRefGoogle Scholar
  21. de Wet JMJ (1968) Diploid-tetraploid-haploid cycles and the origin of variability in Dichantium agamo species. Evolution 22:394–397CrossRefGoogle Scholar
  22. Erazzú LE, Camadro EL, Clausen AM (1999) Pollen-style compatibility relations in natural populations of the wild diploid potato species Solanum spegazzinii Bitt. Euphytica 105:219–227CrossRefGoogle Scholar
  23. Ercolano MR, Carputo D, Li J, Monti L, Barone A, Frusciante L (2004) Assessment of genetic variability of haploids extracted from tetraploid (2= 4= 48) Solanum tuberosum. Genome 47:633–638PubMedCrossRefGoogle Scholar
  24. Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci USA 98:3915–3919PubMedCrossRefGoogle Scholar
  25. Ghislain M, Andrade D, Rodriguez F, Hijmans RJ, Spooner DM (2006) Genetic analysis of cultivated potato Solanum tuberosum L. Phureja group using RAPDs and nuclear SSRs. Theor Appl Genet 113:1515–1527PubMedCrossRefGoogle Scholar
  26. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  27. Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Hered 96:241–252PubMedCrossRefGoogle Scholar
  28. Hamrick JL (1987) Gene flow and distribution of genetic variation in plant populations. In: del Rio AH, Bamberg JB, Huaman Z, Salas A, Vega SE (2001) Association of ecogeographical variables and RAPD marker variation in wild potato populations of the USA. Crop Sci 41:870–878Google Scholar
  29. Hanneman RE, Bamberg JB (1986) Inventory of tuber-bearing Solanum species. Univ Wisconsin Res Bull 533Google Scholar
  30. Hawkes JG (1956) Taxonomic studies on the tuber-bearing Solanums. I. Solanum tuberosum and the tetraploid species complex. Proc Linn Soc, London 166:97–144Google Scholar
  31. JG Hawkes (1962) Introgression in certain wild potato species. Euphytica 11:26–35CrossRefGoogle Scholar
  32. Hawkes JG (1967) The history of the potato. Masters Memorial Lecture, 1966. J R Hortic Soc 92:207–224Google Scholar
  33. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resource. Smithsonian Institution Press, Washington DCGoogle Scholar
  34. Hawkes JG (1994) Origins of cultivated potatoes and species relationships, CAB InternationalGoogle Scholar
  35. Hawkes JG, Hjerting JP (1969) The potatoes of Argentina, Brazil, Paraguay and Uruguay. A biosystematic study. Oxford University Press, OxfordGoogle Scholar
  36. Hawkes JG, Jackson MT (1992) Taxonomic and evolutionary implications of the Endosperm Balance Number hypothesis in potato. Theor Appl Genet 84:180–185CrossRefGoogle Scholar
  37. Huamán Z (1975) The origin and nature of Solanum ajanhuiri Juz et Buk, a South American cultivated diploid potato. Dissertation, University of Birmingham, Birmingham, UKGoogle Scholar
  38. Ispizúa VN (1994) Solanum spegazzini Bitt variabilidad intraespecífica y su relación con especies afines. Trabajo de Graduación Ing. Agr. FCA, UNMdP, Balcarce, Argentina, p 48Google Scholar
  39. Jacobs MMJ, van den Berg RG, Vleeshouwers VGAA, Visser M, Mank R, Sengers M, Hoekstra R, Vosman B (2008) AFLP análisis reveals a lack of phylogenetic structure within Solanum section Petota. BMC Evol Biol 8:145PubMedCrossRefGoogle Scholar
  40. Johnston SA, Hanneman RE Jr (1980) Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am Potato J 57:7–14CrossRefGoogle Scholar
  41. Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 56:293–297Google Scholar
  42. Lamboy WF, Yu J, Forsline PL, Weeden NF (1996) Partitioning of allozyme diversity in wild populations of Malus sieversii L. and implications for germplasm collection. J Amer Soc Hort Sci 121:982–987Google Scholar
  43. Lewontin RC (1966) Hybridization as a source of variation for adaptation to new environments. Evolution 20:315–336CrossRefGoogle Scholar
  44. Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277CrossRefGoogle Scholar
  45. Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237PubMedCrossRefGoogle Scholar
  46. Marfil CF, Masuelli RW, Davison J, Comai L (2006) Genomic instability in Solanum tuberosum × Solanum kurtzianum interspecific hybrids. Genome 49:104–113PubMedGoogle Scholar
  47. Mayr E (1963) Animal species and evolution. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  48. Mayr E (2004) What makes biology unique?. Considerations on the autonomy of a scientific discipline. The Press Syndicate, University of Cambridge, CambridgeGoogle Scholar
  49. McGregor CE, van Treuren R, Hoekstra R, van Hintum THJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156PubMedCrossRefGoogle Scholar
  50. Miller JT, Spooner DM (1996) Introgression of Solanum chacoense (Solanum sect. Petota): upland population reexamined. Syst Bot 21:461–475CrossRefGoogle Scholar
  51. O’Brien SJ, Mayr E (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187–1188PubMedCrossRefGoogle Scholar
  52. Ochoa CM (1990) The potatoes of South America: Bolivia. Cambridge Univ. Press, CambridgeGoogle Scholar
  53. Okada KA, Clausen AM (1985) Natural triploid hybrids between Solanum acaule Bitter and S. infundibuliforme Philippi in the province of Jujuy, Argentina. Euphytica 34:219–231CrossRefGoogle Scholar
  54. Okada KA, Hawkes J (1978) Solanum × rechei, especie silvestre de papas de origen híbrido de la sierra de Famatina (Provincia de la Rioja, Argentina). Kurtziana 11:55–74Google Scholar
  55. Peloquin SJ, Boiteaux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153:1493–1499PubMedGoogle Scholar
  56. Pires JC, Ahao J, Schranz EM, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688Google Scholar
  57. Rabinowitz D, Linder CR, Ortega R, Begazo D, Murguia H, Douches DS, Quirós CF (1990) High levels of interspecific hybridization between Solanum sparsipillum and S. stenotomum in experimental plots in the Andes. Am Potato J 67:73–81CrossRefGoogle Scholar
  58. Raimondi JP, Peralta IE, Masuelli RW, Feingold S, Camadro EL (2005) Examination of the hybrid origin of the wild potato Solanum ruiz-lealii Brücher. Plant Syst Evol 253:33–51CrossRefGoogle Scholar
  59. Rapp AR, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91PubMedCrossRefGoogle Scholar
  60. Roig FA (1956) Alteraciones florales en Solanum subtilius. Rev Argent Agron 23:122–131Google Scholar
  61. Simpson GG (1961) Principles of animal taxonomy. Columbia University Press, New YorkGoogle Scholar
  62. Spooner DM, Castillo R (1997) Reexamination of serie relationships of South American wild potatoes (Solanaceae: Solanum sect. Petota): evidence from chloroplast DNA restriction sites. Am J Bot 84:671–685CrossRefGoogle Scholar
  63. Spooner DM, van den Berg RG (1992) An analysis of recent taxonomic concepts in wild potatoes (Solanum sect. Petota). Genet Res Crop Evol 39:23–37CrossRefGoogle Scholar
  64. Spooner DM, Systma JK, Smith J (1991) A molecular reexamination of diploid hybrid speciation of Solanum raphanifolium. Evolution 45:757–764CrossRefGoogle Scholar
  65. Spooner DM, van den Berg RG, Bamberg JB (1995) Examination of species boundaries of Solanum series Demissa and potentially related species in series Acaulia and series Tuberosa (sect. Petota). Syst Bot 20:295–314CrossRefGoogle Scholar
  66. Summers D, Grun P (1981) Reproductive isolation barriers to gene exchange between Solanum chacoense and S. commersonii (Solanaceae). Am J Bot 68:1240–1248CrossRefGoogle Scholar
  67. Ugent D (1966) Hybrid weed complexes in Solanum sect. Tuberarium. Dissertation, University of Wisconsin, Madison, WIGoogle Scholar
  68. Ugent D (1970) The potato, what is the origin of this important crop plant, and how did it first become domesticated? Science 170:1161–1166PubMedCrossRefGoogle Scholar
  69. van den Berg RG, Miller JT, Ugarte ML, Kardolus JP, Villand J, Nienhuis J, Spooner MD (1998) Collapse of morphological species in the wild potato Solanum brevicaule complex (Solanaceae: sect. Petota). Am J Bot 85:92–109CrossRefGoogle Scholar
  70. van den Berg RG, Bryan GJ, del Río A, Spooner DM (2002) Reduction of species in the wild potato Solanum section Petota series Longipedicellata: AFLP, RAPD and chloroplast SSR data. Theor Appl Genet 105:1109–1114CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ricardo W. Masuelli
    • 1
    • 5
    • 6
  • Elsa L. Camadro
    • 2
    • 6
  • Luis E. Erazzú
    • 3
  • María C. Bedogni
    • 2
    • 6
  • Carlos F. Marfil
    • 4
    • 6
  1. 1.Laboratorio de Biología MolecularINTA La Consulta, CONICETMendozaArgentina
  2. 2.EEA Balcarce, INTA and Facultad de Ciencias AgrariasUniversidad Nacional de Mar del Plata (UNMdP)Buenos AiresArgentina
  3. 3.EEA FamailláINTATucumánArgentina
  4. 4.Laboratorio de Biología Molecular, Facultad de Ciencias AgrariasU.N. de CuyoMendozaArgentina
  5. 5.Estación Experimental Agropecuaria (EEA) La Consulta, Instituto Nacional de Tecnología Agropecuaria (INTA) and Facultad de Ciencias AgrariasUniversidad Nacional de CuyoMendozaArgentina
  6. 6.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations