Advertisement

Plant Systematics and Evolution

, Volume 276, Issue 1–2, pp 59–71 | Cite as

Molecular evolution of 35S rDNA and taxonomic status of Lycopersicon within Solanum sect. Petota

  • Nataliya Y. Komarova
  • Guido W. Grimm
  • Vera Hemleben
  • Roman A. Volkov
Original Article

Abstract

To clarify the taxonomic status of tomatoes (“Lycopersicon”) and their relationship to the members of sect. Petota of genus Solanum L., organization of the rDNA external transcribed spacer (5′ ETS) was studied in 33 Solanum and “Lycopersicon” species. Phylogenetic reconstruction revealed that three major groups can be distinguished. Non-tuber-bearing species of ser. Etuberosa as well as tuber-bearing Central American diploids appeared as a paraphyletic group. The first of two well-defined clades embraced all tuber-bearing South American species and Central American polyploids. The other clade (named “tomato clade”) contains non-tuber-bearing species of ser. Juglandifolia and tomato species of ser. Neolycopersicon, which appears to be imbedded in sect. Petota. The new 5′ ETS variant D characterized by a cluster of downstream subrepeats is characteristic for the tomato clade. The variant D originated directly from the most ancestral variant A found in ser. Etuberosa and the Central American diploids, whereas variants B and C specific for the tuber-bearing South American species and Central American polyploids represent a parallel lineage of molecular evolution. The sequence analysis demonstrates the existence of an evolutionary trend of parallel multiplication of specific motifs in 5′ ETS in different groups of sect. Petota.

Keywords

External transcribed spacer Networks Phylogeny Potato Repeated sequence elements Tomato 

Notes

Acknowledgments

This work was supported by the DAAD (German Academic Exchange Service), the Alexander von Humboldt Foundation, DFG (German Research Foundation) and DFFD (Ukrainian Fundamental Researches State Fund). Authors are grateful to C. M. Rick and F. H. Borgnino, University of California, Davis, USA, and to the seed collection of the Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Gatersleben, Germany, for providing seed material.

References

  1. Afify A (1993) The cytology of the hybrid between Lycopersicon esculentum and L. racemigerum in relation to its parents. Genetica 15:225–240CrossRefGoogle Scholar
  2. Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292CrossRefGoogle Scholar
  3. Arunyawat U, Stephan W, Städler T (2007) Using multilocus sequence data to assess population structure, natural selection, and linkage disequilibrium in wild tomatoes. Molec Biol Evol 24:2310–2322PubMedCrossRefGoogle Scholar
  4. Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec Phylogenet Evol 1:3–16PubMedCrossRefGoogle Scholar
  5. Baldwin BG, Marcos S (1998) Phylogenetic utility of the external transcribed spacer (ETS) of 18S–26S rDNA: congruence of ETS and ITS trees of Calycadenia (Compositae). Molec Phylogenet Evol 10:449–463PubMedCrossRefGoogle Scholar
  6. Barker RF, Harberd NP, Jarvis MG, Flavell RB (1989) Structure and evolution of the intergenic region in a ribosomal DNA repeat unit of wheat. J Molec Biol 201:1–17CrossRefGoogle Scholar
  7. Bena G, Jubier MF, Olivieri I, Lejeune B (1998) Ribosomal external and internal transcribed spacers: combined use in the phylogenetic analysis of Medicago (Leguminosae). J Molec Evol 46:299–306PubMedCrossRefGoogle Scholar
  8. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17CrossRefGoogle Scholar
  9. Bohs L, Olmstead RG (1999) Solanum phylogeny inferred from chloroplast DNA sequence data. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Advances in biology and utilization. Royal Botanic Gardens, Kew, pp 97–110Google Scholar
  10. Borisjuk N, Hemleben V (1993) Nucleotide sequence of the potato rDNA intergenic spacer. Pl Molec Biol 21:381–384CrossRefGoogle Scholar
  11. Borisjuk NV, Davidjuk YM, Kostishin SS, Miroshnichenco GP, Velasco R, Hemleben V, Volkov RA (1997) Structural analysis of rDNA in the genus Nicotiana. Pl Molec Biol 35:655–660CrossRefGoogle Scholar
  12. Breto MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120CrossRefGoogle Scholar
  13. Bryant D, Moulton V (2002) NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: Guigó R, Gusfield D (eds) Algorithms in bioinformatics, second international workshop, WABI. Lecture notes in computer science 2452. Rome, Italy. Springer, Berlin, pp 375–391Google Scholar
  14. Bryant D, Moulton V (2004) Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molec Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  15. Bukasov SM (1970) Cytogenetic problems of evolution of the potato species of the section Tuberarium (Dun.) Buk. genus Solanum. Genetika 4:84–95Google Scholar
  16. Child A (1990) A synopsis of Solanum subgenus Potatoe (G. Don) D’Arcy [Tuberarium (Dun.) Bitter (s. l.)]. Feddes Repert 95:283–298Google Scholar
  17. Child A, Lester RN (1991) Life form and branching within the Solanaceae. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III. Taxonomy, chemistry, evolution. Royal Botanical Garden, Kew, pp 151–159Google Scholar
  18. Child A, Lester RN (2001) Synopsis of the genus Solanum L. and its infrageneric taxa. In: Van den Berg RG, Barendse GWM, van den Weerden GM, Mariani C (eds) Solanaceae V. Advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 39–52Google Scholar
  19. Coen ES, Strachan T, Dover G (1982) Dynamics of concerted evolution of ribosomal DNA and hystone gene families in the melanogaster species subgroup of Drosophila. J Molec Biol 158:17–35PubMedCrossRefGoogle Scholar
  20. Correll DS (1958) A new species and some nomenclatural changes in Solanum section Tuberarium. Madroño 14:232–236Google Scholar
  21. D’Arcy WG (1982) Combinations in Lycopersicon (Solanaceae). Phytologia 51:240Google Scholar
  22. D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III. Taxonomy, chemistry, evolution. Royal Botanical Garden, Kew, pp 75–137Google Scholar
  23. Danert S (1970) Infragenerische Taxa der Gattung Solanum L. Kulturpflanze 18:253–297CrossRefGoogle Scholar
  24. DeVerna JW, Rick CM, Chetelat RT, Lanini BJ, Alpert KB (1990) Sexual hybridization of Lycopersicon esculentum and Solanum rickii by means of a sesquidiploid bridging hybrid. Proc Natl Acad Sci USA 87:9490–9496CrossRefGoogle Scholar
  25. DNASTAR (1998) MegAlign 3.18 edit. Software distributed by DNASTAR Inc., MadisonGoogle Scholar
  26. Dover GA, Flavell RV (1984) Molecular co-evolution: rDNA divergence and the maintenance of function. Cell 38:622–623PubMedCrossRefGoogle Scholar
  27. Dvorak J, Jue D, Lassner M (1987) Homogenization of tandemly repeated nucleotide sequences by distance-dependent nucleotide sequence conversion. Genetics 116:487–498PubMedGoogle Scholar
  28. Felsenstein J (1985) Confidence limits on phylogenetic trees. Science 155:279–284Google Scholar
  29. Garriga-Caldere F, Huigen DJ, Jacobsen E, Ramanna MS (1999) Prospects for introgressing tomato chromosomes into the potato genome: an assessment through GISH analysis. Genome 42:282–288CrossRefGoogle Scholar
  30. Goel S, Raina SN, Ogihara Y (2002) Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of nuclear ribosomal DNA in the Phaseolus-Vigna complex. Molec Phylogenet Evol 22:1–19PubMedCrossRefGoogle Scholar
  31. Grant V (1981) Plant speciation, 2nd edn. Columbia University Press, New YorkGoogle Scholar
  32. Grebenstein B, Röser M, Sauer W, Hemleben V (1998) Molecular phylogenetic relationships in Aveneae (Poaceae) species and other grasses as inferred from ITS1 and ITS2 sequences. Pl Syst Evol 213:233–250CrossRefGoogle Scholar
  33. Grimm GW, Schlee M, Komarova NY, Volkov RA, Hemleben V (2005) Low-level taxonomy and intrageneric evolutionary trends in higher plants. Nova Acta Leopoldina NF 92:129–145Google Scholar
  34. Grimm GW, Renner SS, Stamatakis A, Hemleben V (2006) A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. Evol Bioinformatics 2:279–294Google Scholar
  35. Haider Ali SN, Ramanna MS, Jacobsen E, Visser R (2001) Alien chromosome additions indicate taxonomic distance in Solanaceae. In: Van den Berg RG, Barendse GWM, van den Weerden GM, Mariani C (eds) Solanaceae V. Advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 209–216Google Scholar
  36. Hawkes JG (1990) The potato evolution, biodiversity and genetic resources. Smithsonian Institution Press, Washington DCGoogle Scholar
  37. Hemleben V, Schmidt T, Torres-Ruiz RA, Zentgraf U (2000) Molecular cell biology: role of repetitive DNA in nuclear architecture and chromosome structure. In: Progress in Botany, vol. 61. Springer, Berlin, pp 91–117Google Scholar
  38. Hennig W (1966) Phylogenetic systematics. University of Illinois Press, Champaign-UrbanaGoogle Scholar
  39. Higgins DG, Sharp PM (1989) Fast and sensitive multiple sequence alignment on a microcomputer. CABIOS 5:151–153PubMedGoogle Scholar
  40. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  41. Hunziker AT (2001) Genera Solanacerum. A.R.G. Gartner Verlag K.-G, RuggellGoogle Scholar
  42. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  43. Jacobsen E, De Jong JH, Kamstra SA, van den Berg PMMM, Ramanna MS (1995) Genomic in situ hybridization (GISH) and RFLP analysis for the identification of alien chromosomes in the backcross progeny of potato(+)tomato fusion hybrids. Heredity 74:250–257CrossRefGoogle Scholar
  44. Ji Y, Du Y, Chetelat RT (2001) Pairing and recombination between Solanum lycopersicoides and Lycopersicon esculemtum chromosomes: taxonomic implications and breeding prospects. In: Van den Berg RG, Barendse GWM, van den Weerden GM, Mariani C (eds) Solanaceae V. Advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 217–223Google Scholar
  45. Jobst J, King K, Hemleben V (1998) Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of Cucurbitaceae. Molec Phylogenet Evol 9:204–219PubMedCrossRefGoogle Scholar
  46. Khush GS, Rick CM (1963) Meiosis in hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33:167–183CrossRefGoogle Scholar
  47. King K, Torres RA, Zentgraf U, Hemleben V (1993) Molecular evolution of the intergenic spacer in the nuclear ribosomal RNA genes of Cucurbitaceae. J Molec Evol 36:144–152PubMedCrossRefGoogle Scholar
  48. Komarova NY, Grabe T, Huigen DJ, Hemleben V, Volkov RA (2004) Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids. Pl Molec Biol 56:439–463CrossRefGoogle Scholar
  49. Linder CR, Goertzen LR, Heuvel BV, Francisco-Ortega J, Jansen RK (2000) The complete external transcribed spacer of 18S–26S rDNA: amplification and phylogenetic utility at low taxonomic levels in Asteraceae and closely allied families. Molec Phylogenet Evol 14:285–303PubMedCrossRefGoogle Scholar
  50. Lipscomb DL, Farris JS, Källersjö M, Tehler A (1998) Support, ribosomal sequences and the phylogeny of the eukaryotes. Cladistics 14:303–338CrossRefGoogle Scholar
  51. Marshal JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222CrossRefGoogle Scholar
  52. Matsubayashi M (1991) Phylogenetic relationships in the potato and its related species. In: Tsuchiya T, Gupta PK (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part B. Elsevier, Amsterdam, pp 93–118Google Scholar
  53. McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667PubMedGoogle Scholar
  54. Menzel MY (1962) Pachytene chromosomes of the intergeneric hybrid Lycopersicon esculentum and Solanum lycopersicoides. Amer J Bot 49:605–615CrossRefGoogle Scholar
  55. Miller JC, Tanksley SD (1990) RFLP analysis of genetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  56. Müller K (2004) PRAP—computation of Bremer support for large data sets. Molec Phylogenet Evol 31:780–782PubMedCrossRefGoogle Scholar
  57. Müller KF (2005) The efficiency of different search strategies for estimating parsimony, jackknife, bootstrap, and Bremer support. BMC Evol Biol 5:58PubMedCrossRefGoogle Scholar
  58. Nee M (1999) Synopsis of Solanum in the New World. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Advances in biology and utilization. Royal Botanic Gardens, Kew, pp 285–334Google Scholar
  59. Nylander JAA (2004) MrModeltest, version 2.1. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, UppsalaGoogle Scholar
  60. Olmstead RG, Palmer JD (1997) Implications for phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29CrossRefGoogle Scholar
  61. Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV. Advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137Google Scholar
  62. Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycipersicon. Proc Natl Acad Sci USA 79:5006–5010PubMedCrossRefGoogle Scholar
  63. Peralta IE, Spooner DM (2001) GBSSI gene phylogeny of wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst. Subsection Lycopersicon]. Amer J Bot 88:1888–1902CrossRefGoogle Scholar
  64. Perry KL, Palukaitis P (1990) Transcription of tomato ribosomal DNA and the organization of the intergenic spacer. Molec Genet 221:102–112CrossRefGoogle Scholar
  65. Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–768PubMedGoogle Scholar
  66. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: The biology and taxonomy of Solanaceae. Linn. Soc. Symp. Ser. 7., Linnean Soc. and Academic Press, London, pp 667–677Google Scholar
  67. Rick CM (1988) Tomato-like nightshades: affinities, autoecology, and breeder’s opportunities. Econ Bot 42:145–154Google Scholar
  68. Rick CM, DeVerna JW, Chetelat RT, Stevens MA (1986) Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc Natl Acad Sci USA 83:3580–3583PubMedCrossRefGoogle Scholar
  69. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  70. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  71. Sanderson MJ, Wojciechowski MF, Hu J-M, Sher Khan T, Brady SG (2000) Error, bias, and long-branch attraction in data of two chloroplast photosystem genes in seed plants. Molec Biol Evol 17:782–797PubMedGoogle Scholar
  72. Schiebel K, Waldburg G, Gerstner J, Hemleben V (1989) Termination of transcription of ribosomal RNA genes of mung bean occurs within a 175 bp repetitive element of the spacer region. Molec Gen Genet 218:302–307PubMedCrossRefGoogle Scholar
  73. Schweizer G, Ninnemann H, Hemleben V (1988) Species specific DNA sequences for identification of somatic hybrids between Lycopersicum esculentum and Solanum acaule. Theor Appl Genet 75:679–684CrossRefGoogle Scholar
  74. Schweizer G, Borisjuk N, Borisjuk L, Stadler M, Stelzer T, Schilde L, Hemleben V (1993) Molecular analysis of highly repeated genome fractions in Solanum and their use as markers for the characterization of species and cultivars. Theor Appl Genet 85:801–808CrossRefGoogle Scholar
  75. Spooner DM, Castillo RT (1997) Reexamination of series relationsphips of South American wild potatoes (Solanaceae: Solanum S. sect. Petota): Evidence from chloroplast DNA restriction site variation. Amer J Bot 84:671–685CrossRefGoogle Scholar
  76. Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Amer J Bot 80:676–688CrossRefGoogle Scholar
  77. Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:43–61Google Scholar
  78. Stadler M, Stelzer T, Borisjuk N, Zanke C, Schilde-Rentschler L, Hemleben V (1995) Distribution of novel and known repeated elements of Solanum and application for the identification of somatic hybrids among Solanum species. Theor Appl Genet 91:1271–1278CrossRefGoogle Scholar
  79. Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4. National Illinois History SurveyGoogle Scholar
  80. Van den Berg RG, Groendijk-Wilders N (2007) AFLP data support the recognition of a new tuber-bearing Solanum species but are uninformative about its taxonomic relationships. Pl Syst Evol 269:133–143CrossRefGoogle Scholar
  81. Van den Berg RG, Groendijk-Wilders N, Zevenbergen MJ, Spooner DM (2001) Molecular systematics of Solanum series Circaeifolia (Solanum section Petota) based on AFLP and RAPD markers. In: Van den Berg RG, Barendse GWM, van den Weerden GM, Mariani C (eds) Solanaceae V. Advances in taxonomy and utilization. Nijmegen University Press, Nijmegen, pp 73–84Google Scholar
  82. Volkov R, Kostishin S, Ehrendorfer F, Schweizer D (1996) Organization and molecular evolution of rDNA external transcribed spacer region in two diploid relatives of Nicotiana tabacum (Solanaceae). Pl Syst Evol 201:117–129CrossRefGoogle Scholar
  83. Volkov RA, Borisjuk NV, Panchuk II, Schweizer D, Hemleben V (1999) Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molec Biol Evol 16:311–320PubMedGoogle Scholar
  84. Volkov RA, Zanke C, Panchuk II, Hemleben V (2001) Molecular evolution of 5S rDNA of Solanum species (sect. Petota): application for molecular phylogeny and breeding. Theor Appl Genet 103:1273–1282CrossRefGoogle Scholar
  85. Volkov RA, Komarova NY, Panchuk II, Hemleben V (2003) Molecular evolution of rDNA external transcribed spacer and phylogeny of sect. Petota (genus Solanum). Molec Phylogenet Evol 29:187–202PubMedCrossRefGoogle Scholar
  86. Volkov RA, Medina FJ, Zentgraf U, Hemleben V (2004) Molecular cell biology: Organization and molecular evolution of rDNA, nucleolar dominance and nucleolus structure. In: Esser K, Lüttge U, Beyschlag W, Murata J (eds) Progress in botany, vol vol. 65. Springer, Berlin, pp 106–146Google Scholar
  87. von Wettstein R (1891) Solanaceae. In: Engler E, Prantl K (eds) Natürliche Pflanzenfamilien, vol Vol. 4. Verlag W. Engelmann, Leipzig, pp 4–38Google Scholar
  88. Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nataliya Y. Komarova
    • 1
  • Guido W. Grimm
    • 2
  • Vera Hemleben
    • 3
  • Roman A. Volkov
    • 4
  1. 1.Institute of Plant SciencesUniversity of BernBernSwitzerland
  2. 2.Institute of GeosciencesUniversity of TübingenTübingenGermany
  3. 3.Department of General Genetics, ZMBPUniversity of TübingenTübingenGermany
  4. 4.Department of Molecular Genetics and BiotechnologyUniversity of ChernivtsiChernivtsiUkraine

Personalised recommendations