Plant Systematics and Evolution

, Volume 276, Issue 3–4, pp 209–217 | Cite as

Nuclear genome size variation in fleshy-fruited Neotropical Myrtaceae

  • Itayguara Ribeiro da Costa
  • Marcelo Carnier Dornelas
  • Eliana Regina Forni-Martins
Original Article

Abstract

In Myrtaceae, reports regarding the nuclear DNA content are scarce. The aim of this study is to present genome size data for fleshy-fruited Myrteae, and to test their relation with chromosome number and ploidy, the available data for cytoevolutionary studies in Myrtaceae. Thirty species out of ten genera were investigated for chromosome number and genome size using flow cytometry. Twenty-eight species were diploid with 2n = 2x = 22 and two species were tetraploid with 2n = 4x = 44. All genome sizes measured are new. Among the diploid species, a gradual and small variation in 2C-values (0.486 pg in Gomidesia schaueriana to 0.636 pg in Eugenia multicostata) was observed, whereas the tetraploid genomes of Psidium acutangulum and P. cattleianum had about twice as much DNA (1.053 and 1.167 pg, respectively). The total interspecific variation of C-values was 2.45-fold. The fleshy-fruited Myrteae have smaller holoploid genomes than the capsular-fruited Eucalypteae and Melaleuceae.

Keywords

Chromosome number DNA 2C-value Evolution Flow cytometry Genome size Myrtaceae Myrteae Polyploidy 

References

  1. Atchison E (1947) Chromosome numbers in the Myrtaceae. Amer J Bot 34:159–164CrossRefGoogle Scholar
  2. Azmi A, Noin M, Landré P, Prouteau M, Boudet AM, Chriqui D (1997) High frequency plant regeneration from Eucalyptus globulus Labill Hypocotyls: Ontogenesis and policy level of the regenerants. Pl Cell Tissue Organ Cult 51:9–16CrossRefGoogle Scholar
  3. Baird WV, Estagier AS, Wells JK (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Amer Soc Hort Sci 119:1312–1316Google Scholar
  4. Bennett MD, Leitch IJ (2004) Angiosperm DNA C-values database (release 5.0, Dec. 2004) http://www.rbgkew.org.uk/cvalues/homepage.html (12 Nov. 2007)
  5. Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems and prospects. Ann Bot 95:45–90PubMedCrossRefGoogle Scholar
  6. Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans 274:227–274CrossRefGoogle Scholar
  7. Berg O (1855–1856) Revisio Myrtacearum Americae. Linnaea 27: 1–472Google Scholar
  8. Berg O (1857–1859) Myrtaceae. In: von Martius CFP (ed) Flora Brasiliensis, vol 14, pp 1–655Google Scholar
  9. Brown S, Bergounioux C, Tallet S, Marie D (1991) Flow cytometry of nuclei for ploidy and cell cycle analysis. In: Negrutiu I, Gharti-Chherti G (eds) A laboratory guide for cellular and molecular plant biology. Bihuser, Basel, pp 326–345Google Scholar
  10. Brummer EC, Cazcarro PM, Luth D (1999) Plant genetic resources: Ploidy determination of alfafa germplasm acessions using flow cytometry. Crop Sci 39:1202–1207Google Scholar
  11. Cerbah M, Couland J, Brown SC, Sijak-Yakolev S (1999) Evolutionary DNA variation in the genus Hypochaeris. Heredity 82:261–266PubMedCrossRefGoogle Scholar
  12. Costa IR, Forni-Martins ER (2006a) Chromosome studies in species of Eugenia, Myrciaria and Plinia (Myrtaceae) from southeastern Brazil. Austral J Bot 54:409–415CrossRefGoogle Scholar
  13. Costa IR, Forni-Martins ER (2006b) Chromosome studies in Brazilian species of Campomanesia Ruiz et Pávon and Psidium L. (Myrtaceae Juss.). Caryologia 59:7–13Google Scholar
  14. Costa IR, Forni-Martins ER (2007a) Chromosome studies in Gomidesia, Marlierea, Myrceugenia and Myrcia (Myrtaceae, subtribe Myrciinae). Kew Bull 62:113–118Google Scholar
  15. Costa IR, Forni-Martins ER (2007b) Karyotype analysis in South American species of Myrtaceae. Bot J Linn Soc 155:571–580Google Scholar
  16. Dart S, Kron P, Mable BK (2004) Characterizing polyploidy in Arabdopsis lyrata using chromosome counts and flow cytometry. Canad J Bot 82:185–197CrossRefGoogle Scholar
  17. Das AB, Mohanty S, Das P (1998) New report on chromosome number, karyotype and 4C DNA content in three species of Pachypodium Lindley. Caryologia 51:245–252Google Scholar
  18. Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  19. Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and humam. Cytometry 51A:127–128CrossRefGoogle Scholar
  20. Greilhuber J, Dolezel J, Lysak MA, Bennett MD (2005) The Origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  21. Guerra M (1983) O uso do Giemsa em citogenética vegetal—comparação entre a coloração simples e o bandamento. Cienc Cult 35:190–193Google Scholar
  22. Landrum LR (1986) Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium and Luma (Myrtaceae). Flora Neotropica 45:1–178Google Scholar
  23. Landrum LR (1990) Accara: a new genus of Myrtaceae, Myrtinae from Brazil. Syst Bot 15:221–225CrossRefGoogle Scholar
  24. Landrum LR, Kawasaki ML (1997) The genera of Myrtaceae in Brazil: an illustrated synoptic and identification keys. Brittonia 49:508–536CrossRefGoogle Scholar
  25. Leitch IJ, Chase MW, Bennett MD (1998) Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Ann Bot 82(suppl. A):85–94CrossRefGoogle Scholar
  26. Lucas EJ, Belsham SR, NicLughadha EM, Orlovich DA, Sakuragui CM, Chase MW, Wilson PG (2005) Phylogenetic patterns in the fleshy-fruited Myrtaceae: preliminary molecular evidence. Pl Syst Evol 251:35–51CrossRefGoogle Scholar
  27. Lucas EJ, Harris AS, Mazine FF, Belsham SR, NicLughadha EM, Telford A, Gasson PE, Chase MW (2007) Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales). Taxon 56:1105–1128Google Scholar
  28. Niedenzu F (1893) Myrtaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien III, pp 57–107Google Scholar
  29. Ohri D, Kumar A (1986) Nuclear DNA amounts in some tropical hardwoods. Caryologia 39:303–307Google Scholar
  30. Otto FJ (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Darzynkiewickz Z, Crissman HA (eds) Methods in cell biology, vol 33. Academic Press, San Diego, pp 105–110Google Scholar
  31. Price HJ, Dillon SL, Hodnett G, Rooney WL, Ross L, Johnston JS (2005) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227PubMedCrossRefGoogle Scholar
  32. Price HJ, Johnston JS (1996) Analysis of plant DNA content by Feulgen microspectrophotometry and flow cytometry. In: Jauhar P (ed) Methods of genome analysis in plants. CRC Press, Boca Raton, pp 115–131Google Scholar
  33. Rani V, Raina SN (1998) Genetic analysis of enhanced-axillary-branching-derived Eucalyptus tereticornis Smith and E. camaldulencis Dehn. plants. Pl Cell Rep 17:236–242CrossRefGoogle Scholar
  34. Rye B (1979) Chromosome number variation in the Myrtaceae and its taxonomic implications. Austral J Bot 27:547–573CrossRefGoogle Scholar
  35. Sgorbati S, Masci SM, Soler V, Marchi P (1989) Rapid cytofluorimetric determination of leaf nuclear DNA content in the polyploid series Ranunculus marsicus (R. auricomus agg. Ranunculaceae). Pl Syst Evol 167:219–226CrossRefGoogle Scholar
  36. Soltis DE, Soltis PS, Bennett MD, Leitch IJ (2003) Evolution of genome size in the Angiosperms. Amer J Bot 90:1596–1603CrossRefGoogle Scholar
  37. Suda J, Krahulcová A, Trávnícek P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium subgenus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335PubMedCrossRefGoogle Scholar
  38. Vijayakumar N, Subramanian D (1985) Cytotaxonomical studies in south Indian Myrtaceae. Cytologia (Tokyo) 50:513–520Google Scholar
  39. Vogel KP, Arumuganathan KI, Jensen KB (1999) Nuclear DNA content of perennial grasses of the Triticeae. Crop Sci 39:661–667Google Scholar
  40. Wilson PG, O’Brien MM, Gadek PA, Quinn CJ (2001) Myrtaceae revisited: a reassessment of intrafamilial groups. Amer J Bot 88:2013–2025CrossRefGoogle Scholar
  41. Wilson PG, O’Brien MM, Heslewood MM, Quinn CJ (2005) Relationships within Myrtaceae sensu lato based on a matK phylogeny. Pl Syst Evol 251:3–19CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Itayguara Ribeiro da Costa
    • 1
  • Marcelo Carnier Dornelas
    • 2
  • Eliana Regina Forni-Martins
    • 1
  1. 1.Department of Botany, Institute of Biology (IB)University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Department of Plant Physiology, IBUNICAMPCampinasBrazil

Personalised recommendations