Multiple hybridization origin of Ranunculus cantoniensis (4x): evidence from trnL-F and ITS sequences and fluorescent in situ hybridization (FISH)

  • Liang Liao
  • Lingling Xu
  • Daming Zhang
  • Liang Fang
  • Huisheng Deng
  • Junwei Shi
  • Tongjian Li
Original Article


ITS sequences of Ranunculus cantoniensis apparently an allotetraploid were polymorphic at ten nucleotide sites. ITS-based phylogeny of the complex and its allied species showed that ITS clones of the tetraploid were clustered with R. silerifolius var. silerifolius, R. chinensis, R. silerifolius var. dolicathus and R. trigonus. Chloroplast trnL-F phylogeny showed that the complex is a natural group, in which the tetraploid shared the same clade with R. silerifolius var. dolicathus and R. silerifolius var. silerifolius, whose genetic distances were zero. rDNA FISH showed that the longest rDNA-chromosome of the tetraploid was similar to that of R. silerifolius var. dolicathus exclusively. Combining trnL-F, ITS and FISH data, it is suggested that the most probable parents of the tetraploid were R. silerifolius var. silerifolius, R. chinensis and R. silerifolius var. dolicathus, among them R. silerifolius var. silerifolius donated most. Evidences from DNA sequences and chromosome FISH indicated that the tetraploid was most probably a homoploid hybrid. Thus, a scenario of the tetraploid formation is proposed: the tetraploid was synthesized by two rounds of hybridization. The first round was between two pairs of diploids, forming two tetraploids. The second round was between the two primary tetraploids, producing the allotetraploid, R. cantoniensis, eventually.


Ranunculus Allotetraploid Homoploid hybrid ITS trnL-F FISH 



We thanks Dr. Ge S. and Dr. Liu Z. L. for valuable suggestion in FISH experiment; and thanks State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, CAS, for support in experimental facilities. This study was supported by National Natural Science Foundation of China (NSFC30160008).


  1. Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Pl Biol 8(2):135–141CrossRefGoogle Scholar
  2. Barton NH (2001) The role of hybridization in evolution. Molec Ecol 10(3):551–568CrossRefGoogle Scholar
  3. Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61(7):1773–1780PubMedCrossRefGoogle Scholar
  4. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15Google Scholar
  5. Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci 98(7):3915–3919PubMedCrossRefGoogle Scholar
  6. Fujishima H, Kurita M (1974) Chromosome studies in Ranunculaceae, XXVI. Variation in karyotype of Ranunculus ternatus var. glaber. Mem Ehime Univ Sci Ser B 7(3):62–68Google Scholar
  7. Hizume M (1993) Chromosomal localization of 5S rRNA genes in Vicia faba and Crepis capillaris. Cytologia 58(4):417–421Google Scholar
  8. Gompert Z, Fordyce JA, Forister ML, Shapiro AM, Nice CC (2006) Homoploid hybrid speciation in an extreme habitat. Science 314(5807):1923–1925PubMedCrossRefGoogle Scholar
  9. Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Heredity 96(3):241–252CrossRefGoogle Scholar
  10. Gu ZJ, Xiao H (2003) Physical mapping of the 18S–26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Pl Sci 164(2):279–285CrossRefGoogle Scholar
  11. Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165(2):411–423PubMedCrossRefGoogle Scholar
  12. Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Amer J Bot 89(2):279–286CrossRefGoogle Scholar
  13. Hörandl E, Paun O, Johansson JT, Lehneba C, Armstrong T, Chen LX, Lockhart P (2005) Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Molec Phylogenet Evol 36(2):305–327PubMedCrossRefGoogle Scholar
  14. Koga K, Kadono Y, Setoguchi H (2007) The genetic structure of populations of the vulnerable aquatic macrophyte Ranunculus nipponicus (Ranunculaceae). J Pl Res 120(3):167–174CrossRefGoogle Scholar
  15. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  16. Liao L, Xu LL (1997) New taxa of the genus Ranunculus from China and their karyotypes. Acta Phytotax Sin 35(1):57–62Google Scholar
  17. Liao L, Xu LL, Cheng Y, Fang L (1995) Studies on karyotypes of Ranunculus cantoniensis polyploid complex and its allied species. Acta Phytotax Sin 33(3):230–239Google Scholar
  18. Mallet J (2007) Hybrid speciation. Nature 446(7133):279–283PubMedCrossRefGoogle Scholar
  19. Okada H (1981) On sexual isolation caused by karyotype variations in Ranunculus silerifolius Lév. (in Japanese). Jpn J Bot 56:41–49Google Scholar
  20. Okada H (1984) Polyphyletic allopolyploid origin of Ranunculus cantoniensis (4x) from R. silerifolius (2x) × R. chinensis (2x). Pl Syst Evol 148(1–2):89–102Google Scholar
  21. Okada H (1989) Cytogenetical changes of offsprings from the induced tetraploid hybrid between Ranunculus silerifolius (2n = 16) and R. chinensis (2n = 16) (Ranunculaceae). Pl Syst Evol 167(3–4):129–136CrossRefGoogle Scholar
  22. Okada H, Tamura M (1977) Chromosome variations in Ranunculus quelpaertensis and its allied species (in Japanese). Jpn J Bot 52:360–369Google Scholar
  23. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  24. Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389CrossRefGoogle Scholar
  25. Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4. Sinauer Associates, SunderlandGoogle Scholar
  26. Taberlet PT, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17(5):1105–1109CrossRefGoogle Scholar
  27. Takahashi C (2003) Physical mapping of rDNA sequences in four karyotypes of Ranunculus silerifolius (Ranunculaceae). J Pl Res 116(4):331–336CrossRefGoogle Scholar
  28. Tamura M (1978) Ranunculus cantoniensis group in Japan. J Geobot 26:34–40Google Scholar
  29. Thompson JD, Gibson TJ, Plewinak F, Jeanmougin F, Higgins D (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25(24):4876–4882PubMedCrossRefGoogle Scholar
  30. Troitsky AV, Melekhovets Y, Rakhimova GM, Bobrava VK, Valiejo-Roman KM, Autonov AS (1991) Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Molec Evol 32(3):253–261PubMedCrossRefGoogle Scholar
  31. Wang WC (1995a) A revision of the genus Ranunculus in China (I). Bull Bot Res 15(2):137–180Google Scholar
  32. Wang WC (1995b) A revision of the genus Ranunculus in China (II). Bull Bot Res 15(3):275–329Google Scholar
  33. Wendel JF (2000) Genome evolution in polyploids. Pl Molec Biol 42(1):225–249CrossRefGoogle Scholar
  34. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  35. Zhang DM, Sang T (1998) Chromosome structural rearrangement of Paeonia brownii and P. californica revealed by fluorescence in situ hybridization. Genome 41(6):848–853PubMedCrossRefGoogle Scholar
  36. Zhang DM, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Amer J Bot 86(5):735–740CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Liang Liao
    • 1
  • Lingling Xu
    • 1
  • Daming Zhang
    • 1
    • 2
  • Liang Fang
    • 1
  • Huisheng Deng
    • 1
  • Junwei Shi
    • 1
  • Tongjian Li
    • 1
  1. 1.College of Life ScienceJiujiang UniversityJiujiangChina
  2. 2.State Key Laboratory of Systematic and Evolutionary BotanyInstitute of Botany, Chinese Academy of SciencesBeijingChina

Personalised recommendations