Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation

  • Enoch G. Achigan-Dako
  • Jörg Fuchs
  • Adam Ahanchede
  • Frank R. Blattner
Original Article

Abstract

The occurrence and extent of genome size variation within species is controversially discussed and thorough analyses are rare. Given the large morphological variation in Lagenaria siceraria (bottle gourds) and its wide distribution in Africa we here analysed (1) the genome size variation within cultivars of L. siceraria, (2) the correlation between genome size and morphological traits, and (3) the geographical patterns of DNA content within the species. We measured 2C-values of 366 individuals from 117 accessions of L. siceraria (2n = 22) from Africa, America and Asia via flow cytometry with propidium iodide as DNA stain. We found that 2C-value in L. siceraria (0.683–0.776 pg/2C) is about two times lower than previously reported and varies by about 12% among all accessions. Moreover, our results indicated a clear correlation of genome size with two different seed or usage types and with growing elevations in West Africa. Within the seed types genome size varies by 6.6 and 7.5%, respectively. The genome size differences in seed types of L. siceraria might indicate differences in their evolutionary history and necessitates a re-evaluation of the phylogenetic relationships within L. siceraria while the correlation between 2C-value and the elevation of the collecting sites might indicate an adaptation of genome size to an unknown ecological parameter connected to altitude.

Keywords

C-value Cucurbitaceae Flow cytometry Genome size Gourd Lagenaria siceraria Taxonomy 

Supplementary material

606_2008_75_MOESM1_ESM.doc (124 kb)
Table 1S (DOC 113 kb)

References

  1. Achigan-Dako GE, Fanou N, Kouke A, Avohou H, Vodouhe SR, Ahanchede A (2006) Evaluation agronomique de trois espèces de Egusi (Cucurbitaceae) utilisées dans l’alimentation au Bénin et élaboration d’un modèle de prédiction du rendement. Biotechnol Agron Soc Environ 10:121–129Google Scholar
  2. Achigan-Dako GE, Vodouhe SR, Sangare A (2008) Caractérisation morphologique des cultivars locaux de Lagenaria siceraria (Cucurbitaceae) collectés au Bénin et au Togo. Belg J Bot 141(1)Google Scholar
  3. Adjakidjè V (2006) Cucurbitaceae. In: Akoègninou A, van der Burg WJ, van der Maesen LJG, Adjakidjè V, Essou JP, Sinsin B, Yédomonhan H (eds) Flore du Bénin. Backhuys Publishers, Cotonou & Wageningen, pp 520–534Google Scholar
  4. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Pl Molec Biol Rep 9:208–218CrossRefGoogle Scholar
  5. Barlow PW (1975) Polytene nucleus of giant hair cell of Bryonia anthers. Protoplasma 83:339–349CrossRefGoogle Scholar
  6. Beaulieu JM, Moles TA, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437PubMedCrossRefGoogle Scholar
  7. Beevy SS, Kuriachan P (1996) Chromosome numbers of south Indian Cucurbitaceae and a note on the cytological evolution in the family. J Cytol Genet 31:65–71Google Scholar
  8. Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B 181:109–135Google Scholar
  9. Bennett MD (1973) Nuclear characters in plants. In: Basic mechanisms in plant morphogenesis. Brookhaven Sym Biol 25:344–366Google Scholar
  10. Bennett MD (1985) Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling M (ed) Plant genetics, UCLA symposium on molecular and cellular biology, Alan R Liss, New York, pp 283–302Google Scholar
  11. Bennett MD (1998) Plant genome values: How much do we know? Proc Natl Acad Sci USA 95:2011–2016PubMedCrossRefGoogle Scholar
  12. Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176CrossRefGoogle Scholar
  13. Bennett MD, Leitch IJ (2005a) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90PubMedCrossRefGoogle Scholar
  14. Bennett MD, Leitch IJ (2005b) Plant genome size research: a field in focus. Ann Bot 95:1–6PubMedCrossRefGoogle Scholar
  15. Burkill HM (1985) The useful plants of West Tropical Africa, vol 1, 2nd edn. Families A-D. Royal Botanical Gardens, KewGoogle Scholar
  16. Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variation within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theor Appl Genet 96:559–567CrossRefGoogle Scholar
  17. Chattopadhyay D, Sharma AK (1991) Chromosome studies and nuclear DNA in relation to sex difference and plant habit in two species of Cucurbitaceae. Cytologia 56:409–417Google Scholar
  18. Crawley JM (2007) The R book. Wiley, West SussexGoogle Scholar
  19. Decker-Walters D, Staub J, Lopez-Sese A, Nakata E (2001) Diversity in landraces and cultivars of bottle gourd (Lagenaria siceraria; Cucurbitaceae) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 48:369–380CrossRefGoogle Scholar
  20. Decker-Walters D, Wilkins-Ellert M, Chung S-M, Staub EJ (2004) Discovery and genetic assessment of wild bottle gourd [Lagenaria siceraria (Mol.) Standley; Cucurbitaceae] from Zimbabwe. Econ Bot 58:501–508CrossRefGoogle Scholar
  21. Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82 (suppl A):17–26Google Scholar
  22. Dolezel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  23. Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 41–65CrossRefGoogle Scholar
  24. Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50:1029–1035PubMedCrossRefGoogle Scholar
  25. Erickson LD, Smith DB, Clarke CA, Sandweiss HD, Tuross N (2005) An Asian origin for a 10, 000-year-old domesticated plant in the Americas. Proc Natl Acad Sci USA 102:18315–18320PubMedCrossRefGoogle Scholar
  26. Galbraith DW, Harkins RK, Maddox MJ, Ayres MN, Sharma PD, Firoozabady E (1983) Rapid flow cytometry analysis of the cell cycle in intact plant tissues. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  27. Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soybean. Theor Appl Genet 88:429–432CrossRefGoogle Scholar
  28. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82 (suppl A):27–35Google Scholar
  29. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98PubMedCrossRefGoogle Scholar
  30. Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–101CrossRefGoogle Scholar
  31. Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD (2003) First nuclear DNA C-values for 28 Angiosperm genera. Ann Bot 91:31–38PubMedCrossRefGoogle Scholar
  32. Heiser CB (1979) The gourd book. University of Oklahoma Press, NormanGoogle Scholar
  33. Hill T, Lewicki P (2006) Statistics: methods and applications. A comprehensive reference for science, industry, and data mining, 1st edn. StatSoft, TulsaGoogle Scholar
  34. Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy and genome size in plants. Pl Physiol 55:496–501CrossRefGoogle Scholar
  35. Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molec Biol Evol 21:860–869PubMedCrossRefGoogle Scholar
  36. Jeffrey C (1967) On the classification of the Cucurbitaceae. Kew Bull 20:417–426CrossRefGoogle Scholar
  37. Jeffrey C (1995) Cucurbitaceae. In: Edwards S, Tadesse M, Hedberg I (eds) Flora of Ethiopia and Eritrea. Canellaceae to Euphorbiaceae, vol 2, Part 2. The National Herbarium/Uppsala University, pp 17–59Google Scholar
  38. Jeffrey C (2005) A new system of Cucurbitaceae. Bot Zhurn 90:332–335Google Scholar
  39. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607PubMedCrossRefGoogle Scholar
  40. Keraudren M (1967) Cucurbitaceae. In: Raynal J (ed) Flore du Cameroun, vol 6. Museum National d’Histoire Naturelle, Paris, pp 154–185Google Scholar
  41. Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76CrossRefGoogle Scholar
  42. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190PubMedCrossRefGoogle Scholar
  43. Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annual Rev Ecol Evol Syst 38:847–876CrossRefGoogle Scholar
  44. Lia VV, Confalonieri AV, Poggio L (2007) B chromosome polymorphism in maize landraces: adaptive vs demographic hypothesis of clinal variation. Genetics 177:895–904PubMedCrossRefGoogle Scholar
  45. Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. WILEY-VCH, Weinheim, pp 153–176CrossRefGoogle Scholar
  46. Lowe A, Harris S, Ashton P (2004) Ecological genetics. Design, analysis and application. Blackwell Publishing, TJ International, CornwallGoogle Scholar
  47. Mahelka V, Suda J, Jarolímová V, Trávnícek P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermdia (Poaceae: Triticeae) and their hybrid. Folia Geobot 40:367–384CrossRefGoogle Scholar
  48. McLeish S, Sunderland N (1961) Measurements of DNA in higher plants by feulgen photometry and chemical methods. Exp Cell Res 24:527–540CrossRefGoogle Scholar
  49. Meagher TR, Costish DE (1996) Nuclear DNA content and floral evolution in Silene latifolia. Proc Roy Soc Lond B 263:1455–1460CrossRefGoogle Scholar
  50. Meagher TR, Gillies ACM, Costish DE (2005) Genome size, quantitative genetics and the genome basis for flower size evolution in Silene latifolia. Ann Bot 95:247–254PubMedCrossRefGoogle Scholar
  51. Morimoto Y, Mvere B (2004) Lagenaria siceraria. In: Grubben GJH, Denton OA (eds) Vegetables. Plant resources of Tropical Africa 2. Backhuys Publishers/CTA, Wageningen/Leiden, pp 353–358Google Scholar
  52. Morimoto Y, Maundu P, Fujimaki H, Morishima H (2005) Diversity of the white-flowered gourd (Lagenaria siceraria) and its relatives in Kenya: fruit and seed morphology. Genet Resour Crop Evol 52:737–747CrossRefGoogle Scholar
  53. Murray GB (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedCrossRefGoogle Scholar
  54. Norman JC (1992) Tropical vegetable crops Cucurbitaceous crops. Arthur Stockwell, Great Britain, pp 107–119Google Scholar
  55. Obermayer R, Greilhuber J (2005) Does genome size in Dasypyrum villosum vary with fruit colour? Heredity 95:91–95PubMedCrossRefGoogle Scholar
  56. Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82 (suppl A) 75–83Google Scholar
  57. Poggio L, Rosato M, Chiavarino AM, Naranjo AC (1998) Genome size and environmental correlations in Maize (Zea mays spp. mays, Poaceae). Ann Bot 82:107–115CrossRefGoogle Scholar
  58. Price HJ, Chambers KL, Bachmann K (1981) Genome size variation in diploid Microseris bigelovii (Asteraceae). Bot Gaz 142:156–159CrossRefGoogle Scholar
  59. Ramachandran C, Narayan RKJ (1985) Chromosomal DNA variation in Cucumis. Theor Appl Genet 69:497–502CrossRefGoogle Scholar
  60. Rayburn AL, Auger JA, Benzinger ES, Hepburn AG (1989) Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot 40:1179–1183CrossRefGoogle Scholar
  61. R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org
  62. Rosato M, Chiavarino AM, Naranjo CA, Hernandez CJ, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays spp. mays, Poaceae). Amer J Bot 85:168–174CrossRefGoogle Scholar
  63. Salzmann U, Hoelzmann P (2005) The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene 15:190–199CrossRefGoogle Scholar
  64. Schippers RR (2004) Légumes Africains Indigènes: présentation des espèces cultivées. Cucurbitaceae. Margraf Publishers, CTA, 113–182Google Scholar
  65. Schmidt-Lebuhn AN, Fuchs J, Kessler M (2008) Flow cytometric measurements do not reveal different ploidy levels in Minthostachys (Lamiaceae). Pl Syst Evol 271:123–128CrossRefGoogle Scholar
  66. Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321PubMedCrossRefGoogle Scholar
  67. Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678PubMedCrossRefGoogle Scholar
  68. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W·H Freeman and Company, New YorkGoogle Scholar
  69. SPSS for Windows, Rel. 12.0.0. 2003. SPSS, ChicagoGoogle Scholar
  70. Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line fitting methods for allometry. Biol Rev 81:259–291PubMedCrossRefGoogle Scholar
  71. White F (1983) The vegetation of Africa. A descriptive memoir to accompany the Unesco AETFAT/UNSO vegetation map of Africa. UNESCO, ParisGoogle Scholar
  72. Zoro Bi I, Koffi KK, Dje Y (2003) Caractérisation botanique et agronomique de trois espèces de cucurbits consommées en sauce en Afrique de l’Ouest: Citrullus sp., Cucumeropsis manii, Lagenaria siceraria. Biotechnol Agron Soc Environ 7:187–199Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Enoch G. Achigan-Dako
    • 1
    • 3
  • Jörg Fuchs
    • 2
  • Adam Ahanchede
    • 3
  • Frank R. Blattner
    • 1
  1. 1.Department of Taxonomy and Evolutionary BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  2. 2.Cytogenetics and Genome AnalysisLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Plant Science Laboratory, Faculty of Agronomic SciencesUniversity of Abomey CalaviCotonouBenin

Personalised recommendations