Advertisement

Plant Systematics and Evolution

, Volume 275, Issue 3–4, pp 169–179 | Cite as

Genotypical and multiple phenotypical traits discriminate Salix × rubens Schrank clearly from its parent species

  • Alexandra Kehl
  • Gregor Aas
  • Gerhard Rambold
Original Article

Abstract

Most studies on Salix hybrids concerning the diversity in a hybrid complex included typical morphological characteristics of leaves, buds, twigs and flowers for comparison with genotypic traits. Our analyses are based on a set of phenotypical traits of 19 clones of the S. alba/S. fragilis-aggregate which includes characteristics as phenology, growth, and composition of secondary leaf compounds, for the first time additional to morphological traits. Three clearly distinct groups (S. alba L., S. fragilis L., and S. × rubens Schrank) could be identified based on phenotypical traits and ITS1 and 5.8S nrDNA sequences. S. × rubens revealed additivities at variable ITS1 and 5.8S positions as well as intermediate morphology and secondary compound pattern, but was characterised by significant earlier foliation start. This property leads to a better utilization of the vegetation period and may explain the detected better growth compared to the parent species and therefore also may have contributed to the widespread occurrence of S. × rubens in Central Europe.

Keywords

Salix alba Salix fragilis Salix × rubens Willow Hybrid Foliation phenology ITS Phenolic glucosides 

Notes

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, Graduiertenkolleg 678). We thank Professor Dr. K.-H. Seifert (Bayreuth), who offered the possibility for chemical analyses in his laboratory. The curators of the Botanische Staatssammlung München provided support with herbarium material.

References

  1. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  2. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  3. Beck A (2002) Selektivität der Symbionten schwermetalltoleranter Flechten. In: Fakultät für Biologie. Ludwig-Maximilians-Universität München, München, p 194Google Scholar
  4. Beismann H, Barker JHA., Karp A, Speck T (1997) AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Molec Ecol 6:989–993CrossRefGoogle Scholar
  5. Binns WW, Blunden G (1969) Effects of hybridization on leaf constituents in the genus Salix. Phytochemistry 8:1235–1239CrossRefGoogle Scholar
  6. Chmelar J, Meusel W (1976) Die Weiden Europas. Ziemsen Verlag, Wittenberg LutherstadtGoogle Scholar
  7. Christensen KI, Jonsell B (2005) Proposal to conserve the name Salix fragilis with a conserved type (Salicaceae). Taxon 54:555–556Google Scholar
  8. Clancy KM, Price PW, Sacchi CF (1993) Is leaf size important for a leaf-galling sawfly (Hymenoptera: Tenthredinidae). Environ Entomol 22:116–126Google Scholar
  9. De Cock K et al (2003) Diversity of the willow complex Salix albaS. × rubensS. fragilis. Silvae Genet 52:148–153Google Scholar
  10. Engel P, Fartmann B, Nikoleit K, Rehfeldt K (1999) Sequencing brochure, 4th edn. MWG-Biotech AGGoogle Scholar
  11. Feliner GN, Rossello JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molec Phylogenet Evol 44:911–919CrossRefGoogle Scholar
  12. Friedl T (1996) Evolution of the polyphyletic genus Pleurastrum (Chlorophyta): inferences from nuclear-encoded ribosomal DNA sequences and motile cell ultrastructure. Phycologia 35:456–469Google Scholar
  13. Fritz RS, Crabb BA, Hochwender CG (2003) Preference and performance of a gall-inducing sawfly: plant vigor, sex, gall traits and phenology. Oikos 102:601–613CrossRefGoogle Scholar
  14. Fritz RS, Hochwender CG, Lewkiewicz DA, Bothwell S, Orians CM (2001) Seedling herbivory by slugs in a willow hybrid system: developmental changes in damage, chemical defense, and plant performance. Oecologia 129:87–97CrossRefGoogle Scholar
  15. Fritz RS, Roche BM, Brunsfeld SJ, Orians CM (1996) Interspecific and temporal variation in herbivore responses to hybrid willows. Oecologia 108:121–129CrossRefGoogle Scholar
  16. Hakulinen J, Julkunen-Tiitto R (2000) Variation in leaf phenolics of field-cultivated willow (Salix myrsinifolia) clones in relation to occurrence of Melampsora rust. Euro J Forest Pathol 30:29–41CrossRefGoogle Scholar
  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  18. Hardig TM, Brunsfeld SJ, Fritz RS, Morgan M, Orians CM (2000) Morphological and molecular evidence for hybridization and introgression in a willow (Salix) hybrid zone. Molec Ecol 9:9–24CrossRefGoogle Scholar
  19. Hegnauer R (1973) Chemotaxonomie der Pflanzen. Birkhäuser Verlag, BaselGoogle Scholar
  20. Hjälten J (1998) An experimental test of hybrid resistance to insects and pathogen using Salix caprea, S. repens and their F1-Hybrids. Oecologia 117:127–132CrossRefGoogle Scholar
  21. Hjälten J, Ericson L, Roininen H (2000) Resistance of Salix caprea, S. phylicifolia and their F1 hybrids to herbivores and pathogens. Ecoscience 7:51–56Google Scholar
  22. Hochwender CG, Fritz RS (2004) Plant genetic differences influence herbivore community structure: evidence from a hybrid willow system. Oecologia 138:547–557PubMedCrossRefGoogle Scholar
  23. Hochwender CG, Janson EM, Cha DH, Fritz RS (2005) Community structure of insect herbivores in a hybrid system: examining the effects of browsing damage and plant genetic variation. Ecol Entomol 30:170–175CrossRefGoogle Scholar
  24. Hörandl E, Florineth F, Hadacek F (2002) Weiden in Österreich und angrenzenden Gebieten. Eigenverlag des Arbeitsbereiches Ingenieurbiologie und Landschaftsbau. Universität Wien, WienGoogle Scholar
  25. Julkunen-Tiitto R (1985) Phenolic constituents in the leaves of Northern Willows: methods for the analysis of certain phenolics. J Agric Food Chem 33:213–217CrossRefGoogle Scholar
  26. Julkunen-Tiitto R (1986) A chemotaxonomic survey of phenolics in leaves of northern Salicaceae species. Phytochemistry 25:663–667CrossRefGoogle Scholar
  27. Julkunen-Tiitto R (1989) Phenolic constituents of Salix: a chemotaxonomic survey of further finnish species. Phytochemistry 28:2115–2125CrossRefGoogle Scholar
  28. Julkunen-Tiitto R, Tahvanainen J (1989) The effect of sample preparation method of extractable phenolics of Salicaceae species. Pl Med 55:55–58CrossRefGoogle Scholar
  29. Keim P, Paige KN, Whitham TG, Lark KG (1989) Genetic analysis of an interspecific hybrid swarm of Populus: occurrence of undirectional introgression. Genetics 123:557–565PubMedGoogle Scholar
  30. Kolehmainen J, Julkunen-Tiitto R, Tahvanainen J (1995) Phenolic glucosides as feeding cues for willow-feeding leaf beetles. Entomol Exp Appl 74:235–243CrossRefGoogle Scholar
  31. Kopp RF, Smart LB, Maynard CA, Isebrands JG, Tuskan GA, Abrahamson LP (2001) The development of improved willow clones for eastern North America. For Chron 77:287–292Google Scholar
  32. Lautenschlager-Fleury D (1994) Die Weiden von Mittel- und Nordeuropa. Birkhäuser Verlag, BaselGoogle Scholar
  33. Leskinen E, Alstrom-Rapaport C (1999) Molecular phylogeny of Salicaceae and closely related Flacourtiaceae: evidence from 5.8 S, ITS 1 and ITS 2 of the rDNA. Pl Syst Evol 215:209–227CrossRefGoogle Scholar
  34. Meier B, Bettschart A, Shao Y, Lautenschlager E (1989) Einsatz der modernen HPLC für chemotaxonomische Untersuchungen morphologisch schwer zu differenzierender Salix-Hybriden. Pl Med 55:213–214CrossRefGoogle Scholar
  35. Meikle RD (1984) Willows and poplars of Great Britain and Ireland. Botanical Society of the British Isles, LondonGoogle Scholar
  36. Miyamoto Y, Nakamura M (2004) Plant phenology-mediated indirect effects: the gall midge opens the phenological window wider for a leaf beetle. Entomol Sci 7:315–322CrossRefGoogle Scholar
  37. Neumann A (1981) Die mitteleuropäischen Salix-Arten. Forstliche Versuchsanstalt Wien, WienGoogle Scholar
  38. Nichols-Orians CM, Fritz RS, Clausen TP (1993) The genetic basis for variation in the concentration of phenolic glycosides in Salix sericea: clonal variation and sex-based differences. Biochem Syst Ecol 21:535–542CrossRefGoogle Scholar
  39. Nyman T, Julkunen-Tiitto R (2005) Chemical variation within and among six northern willow species. Phytochemistry 66:2836–2843PubMedCrossRefGoogle Scholar
  40. Orians CM, Bolnick DI, Roche BM, Fritz RS, Floyd T (1999) Water availability alters the relative performance of Salix sericea, Salix eriocephala, and their F-1 hybrids. Canad J Bot Revue Canad Bot 77:514–522CrossRefGoogle Scholar
  41. Palo T (1984) Distribution of birch (Betula spp.), willow (Salix spp.) and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J Chem Ecol 10:499–520CrossRefGoogle Scholar
  42. Price PW (1991) The plant vigor hypothesis and herbivore attack. Oikos 62:244–251CrossRefGoogle Scholar
  43. Price PW et al (2004) Release of phylogenetic constraints through low resource heterogeneity: the case of gall-inducing sawflies. Ecol Entomol 29:467–481CrossRefGoogle Scholar
  44. Rauscher JT, Doyle JJ, Brown AHD. (2002) Internal transcribed spacer repeat-specific primers and the analysis of hybridization in the Glycine tomentella (Leguminosae) polyploid complex. Molec Ecol 11:2691–2702CrossRefGoogle Scholar
  45. Rieseberg LH, Carney SE (1998) Plant hybridization. New Phytol 140:599–624CrossRefGoogle Scholar
  46. Rieseberg LH, Wood TE, Baack EJ (2006) The nature of plant species. Nature 440:524–527PubMedCrossRefGoogle Scholar
  47. Roininen H, Price PW, Julkunen-Tiitto R, Tahvanainen J, Ikonen A (1999) Oviposition stimulant for a gall-inducing sawfly, Euura lasiolepis, on willow is a phenolic glycosid. J Chem Ecol 24:943–953CrossRefGoogle Scholar
  48. Ronnberg-Wastljung AC, Glynn C, Weih M (2005) QTL analyses of drought tolerance and growth for a Salix dasyclados × Salix viminalis hybrid in contrasting water regimes. Theor Appl Genet 110:537–549PubMedCrossRefGoogle Scholar
  49. Salick J, Pfeffer E (1999) The interplay of hybridization and clonal reproduction in the evolution of willows—experiments with hybrids of S. eriocephala[R] & S. exigua[X] and S. eriocephala & S. petiolaris[P]. Pl Ecol 141:163–178CrossRefGoogle Scholar
  50. Sang T, Crawford DJ, Stuessy TF (1995) Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: implications for biogeography and concerted evolution. Proc Natl Acad Sci USA 92:6813–6817PubMedCrossRefGoogle Scholar
  51. Schiechtl HM (1992) Weiden in der Praxis. Patzer Verlag, BerlinGoogle Scholar
  52. Shao Y (1991) Phytochemischer Atlas der Schweizer Weiden. In: Pharmakognesie und Phytochemie. ETH Zürich, Zürich, p 198Google Scholar
  53. Skvortsov AK (1999) Willows of Russia and adjacent countries. University of Joensuu, JoensuuGoogle Scholar
  54. Staden R, Beal KF, Bonfield JK (1998) The Staden Package. The Humana Press Inc., TotowaGoogle Scholar
  55. Stebbins GL (1959) The role of hybridization in evolution. Proc Amer Philos Soc 103:231–251Google Scholar
  56. Swofford DL (1998) Phylogenetic analysis using parsimony (and other methods). Sinauer Associates, SunderlandGoogle Scholar
  57. Thiébaut M (2000) A foliar morphometric approach to the study of Salicaceae. Bot Rev 66:423–439CrossRefGoogle Scholar
  58. Thieme H (1965) Die Phenolglykoside der Salicaceen. Die Pharmazie Eschborn 20:436–439Google Scholar
  59. Toepffer A (1915) Salices Bavariae, MünchenGoogle Scholar
  60. Triest L (2001) Hybridization in staminate and pistillate Salix alba and S fragilis (Salicaceae): morphology versus RAPDs. Pl Syst Evol 226:143–154CrossRefGoogle Scholar
  61. Triest L et al (1997) Use of RAPD markers to estimate hybridization in Salix alba and Salix fragilis. Belg J Bot 129:140–148Google Scholar
  62. Triest L, de Greef B, D’Haeseleer M, Echchgadda G, van Slycken J, Coart E (1998) Variation and inheritance of isozyme loci in controlled crosses of Salix alba and Salix fragilis. Silvae Genet 47:88–94Google Scholar
  63. Triest L, de Greef B, Vermeersch S, van Slycken J, Coart E (1999) Genetic variation and putative hybridization in Salix alba and Salix fragilis (Salicaceae): evidence from allozyme data. Pl Syst Evol 215:169–187CrossRefGoogle Scholar
  64. Triest L, de Greef B, de Bondt R, van Slycken J (2000) RAPD of controlled crosses and clones from the field suggests that hybrids are rare in the Salix albaSalix fragilis complex. Heredity 84:555–563PubMedCrossRefGoogle Scholar
  65. Trueblood DD, Gallagher ED, Gould DM (1994) The three stages of seasonal succession on the Savin Hill Cove mudflat, Boston Harbor. Limnol Oceanogr 39:1440–1454Google Scholar
  66. Trung LQ, Van Puyvelde K, Triest L (2008) Consensus primers of cyp73 genes discriminate willow species and hybrids (Salix, Salicaceae). Molec Ecol Resour 8:455–458CrossRefGoogle Scholar
  67. Weih M (2001) Evidence for increased sensitivity to nutrient and water stress in a fast-growing hybrid willow compared with a natural willow clone. Tree Physiol 21:1141–1148PubMedGoogle Scholar
  68. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., San Diego, p 482Google Scholar
  69. Wichura M (1865) Die Bastardbefruchtung im Pflanzenreich erläutert an den Bastarden der Weiden. Verlag von E Morgenstern, BreslauGoogle Scholar
  70. Yukawa J (2000) Synchronization of gallers with host plant phenology. Popul Ecol 42:105–113CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Plant Systematics, Mycology Sect.University of BayreuthBayreuthGermany
  2. 2.Ecological-Botanical GardenUniversity of BayreuthBayreuthGermany

Personalised recommendations